Leading baryon production in *ep* and hadron-hadron collisions

Low-x Workshop Meeting @ Kyoto YITP 18 June 2014

Yuji Yamazaki (Kobe University)

Today's subject

- Comparing the leading neutron data from HERA with the new LHCf environment
 - Neutron production in LHCf kinematic range evaluated using HERA parameterisation

Special thanks to

- LHCf group: Prof. Y. Itow, Prof. T. Sako, Dr. K. Kawade
- P. Ostapchenko and T. Pierog borrowing slides

See talk by Takashi Sako

The LHCf measurement

- Self-trigger: inclusive measurement
- Three angular ranges
- Very forward bin: many neutrons at $x_F = 1$
- Many models predict the flat behaviour:
 - QGSJET II-03
 - EPOS 1.99
 - PYTHIA 8.145

From Doctoral Thesis by K. Kawade

HERA measurements

- DIS events $(Q^2 > 2 \text{ (ZEUS) or 6 (H1) GeV}^2)$
- Well described by a combination of
 - One-pion exchange (OPE) and
 - Fragmentation
 - as simulated by colour-dipole model etc.
 - ... or even a linear function like $\propto (1 x_F)$

- HERA did not observe the flat behaviour at $x_F = 1$
- Kinematical region different?

p_T distributions vs x_F

Nuclear Physics B 776 (2007) 1-37

- $x_L = x_F$
- Acceptance: $p_T < 0.69x_F$ GeV
- Well described by single exponential $\frac{d\sigma}{dp_T^2} = a \exp(-bp_T^2)$

The *a* and *b* parameters

- a/b gives "total" $d\sigma/dx_F$
 - assuming the exp. behaviour
- small "peak" at $x_F \sim 0.8$ from OPE
- still no event at $x_F \simeq 1$

LHCf and HERA kinematic range

- Difference between LHCf and HERA data: maybe from different kinematic coverage?
 - More direct comparison could be made by **assuming** that the cross sections are the same **in** (p_T^2, x_F) **space**
 - except that normalisation between pp and γ^*p are different
- HERA coverage $p_T < 0.69x_F \ (p_T \text{ in GeV})$

HERA $0 \quad 0.5 \quad 1.0 \quad 1.5$ $0 \quad 0.5 \quad 0.5$ $0 \quad 0.5 \quad 0.5$ $0 \quad 0.5 \quad 0.5$ $0 \quad 0.5 \quad 0.5$

- LHCf coverage
 - 1. $p_T < 0.149x_F$: covered by HERA
 - 2. $0.693x_F < p_T < 0.873x_F$: just outside HERA
 - 3. $0.873x_F < p_T < 1.045x_F$: extrapolation assuming exponential behaviour

The HERA parameterisation extrapolated to LHCf kinematic range

- assuming that the behaviour is invariant in (p_T^2, x_F) space
- Error bars:
 - stat + syst
 - Assuming no correlation between
 - normalisation a and
 - slope b
- Still no flat dependence at high- x_F

• High- p_T bins: extrapolated (outside HERA acceptance)

- including the height of peaks,
 if appropriately normalised by a common factor
- Lack of events for E > 2500 GeV in the HERA parameterisation
- Low- x_F : slight deficit
 - Note that the exponential parameterisation may not be appropriate when the slope is small

Newest H1 analysis with comparison to models

- LHCf and H1 data show similar tendency at low x_F with respect to model shapes
 - e.g. EPOS shows fair description of shapes at low x_F QGSJET II-04 too hard
- High x_F : models show excess w.r.t. the H1 data
 - e.g. the EPOS model gives excess at high x_F but this describes well the shape of the LHC data

LHCf vs HERA summary

- HERA spectrum is softer at $x_F = 1$ than observed at LHCf
- Low- x_F spectrum looks very similar to HERA parameterisation
 - HERA parameterisation describes the LHCf data possibly better than models at low- x_F
- Models can qualitatively explain the high- x_F behaviour of the LHCf data
- But fails to describe high- x_F behaviour of the HERA data

High- x_F description of models

- The flat behaviour of the high- x_L spectrum in the most forward region comes from:
 - the non-diffraction (ND) shape, and
 - the projectile diffraction (diffractive remnants) $pp \rightarrow N^* + Y$, $N^* \rightarrow n + (\text{small } \# \text{ of hadrons})$

at Zero Degrees (HESZ2013), Nagova Univ., March 2013

particle production", HESZ2013

central strings

Diff. remn.

Diffractive remnant at HERA?

- Fraction of LRG events: 2/3 ~ 1/2 of inclusive DIS
 - No neutron from proton-elastic:
 only proton-dissociative diffraction can contribute
 → we expect the number is small
 - The fraction increases with x_F : diffractive production of neutrons at high x_L is certainly there BUT: not a dominant mechanism
- Diffractive remnant seems more enhanced at the LHC
 - CMS energy dependence? Re-scattering?

Conclusions

- **High-** x_F **spectrum:** excess in LHCf against HERA data
- Many of models know about that

- A large fraction comes from diffractive remnant
- These models fail to describe the HERA data No evidence of diffractive dominance at high- x_L data at HERA
- Low-x_F spectrum: LHCf and HERA seems consistent
 LHCf ≃ HERA ≠ Models
 - The HERA parameterisation may be good for tuning models