A generalized Glauber-Velasco model for LHC focussing on the low-t region

T. Csörgő 1, R. J. Glauber 2 and F. Nemes 1,3

1 Wigner Research Center for Physics, Budapest2 Harvard University, Cambridge, MA3 CERN

Intro to Diffraction
Glauber-Velasco model
Non-exponential behaviour at low-t
Analysis of TOTEM/LHC p+p @ 7 TeV
New results, generalized Glauber & Velasco
Summary

arxiv:1306.4217

Diffraction - Hofstadter, Nobel (1961)

Fig. 5. This figure shows the elastic and inelastic curves corresponding to the scattering of 420-MeV electrons by "C. The solid circles, representing experimental points, show the elastic-scattering behavior while the solid squares show the inelastic-scattering curve for the 4.43-MeV level in carbon. The solid line through the elastic data shows the type of fit that can be calculated by phase-shift theory for the model of carbon shown in Fig. 8.

Diffractive electron scattering on nuclei and the resulting charge density distributions, images of spherical nuclei

Diffraction - What have we learned?

- 1) The volume of spherical nuclei is proportional to A
- 2) The surface thickness is constant, independent of A
- → Central charge density of large nuclei is approx constant R. Hofstadter, Nobel Lecture (1961)

What have we learned since LowX'13?

tdip σ tot ~ C

geometric scaling at LHC

 $C = 54.8 \pm 0.7$ mbGeV2 (data)

C ≠ 35.9 mbGeV2 (black disc)

NOT black disck limit

arxiv:1311.2308

saturation, BEL = ?

Glauber - Velasco model summary

$$F(t) = i \int_0^\infty J_0 \left(b \sqrt{-t} \right) \left\{ 1 - \exp\left[-\Omega \left(b \right) \right] \right\} b db$$

$$\Omega(b) = \frac{\kappa}{4\pi} \left(1 - i\alpha \right) \int_0^\infty J_0 \left(q \, b \right) G_{p,E}^2 \left(-t \right) \frac{f(t)}{f(0)} q dq$$

$$\frac{f(t)}{f(0)} = \frac{e^{i(b_1|t|+b_2 t^2)}}{\sqrt{1+a|t|}}$$

$$G_{p,E}\left(q^{2}\right) = \sum_{i=1}^{n} \frac{a_{i}^{E}\left(m_{i}^{E}\right)^{2}}{\left(m_{i}^{E}\right)^{2} + q^{2}}, \sum_{i=1}^{n} a_{i}^{E} = 1, G_{p,E}(0) = 1$$

 $d\sigma_{el}/d|t| = \pi |F(t)|^2$

a_i^E	$(m_i^E)^2 \; (\text{fm}^{-2})$
0.219	3.53
1.371	15.02
-0.634	44.08
0.044	154.20

F(t): f. sc. amplitude $\Omega(b)$: opacity, complex

f(t): cluster averaged partonparton scattering amplitude

-t = q2: momentum transfer b: impact parameter

dσ/dt: diff. cross-section elastic pp scattering

R.J. Glauber and J. Velasco Phys. Lett. B147 (1987) 380

BSWW EM form factors GE

@ Low-X 2013: GV results, dip region

Glauber-Velasco (unmodified version)

describes dσ/dt data
Both at ISR and
TOTEM@LHC
in the dip region

arxiv:1311.2308

Note: at low-t model is exponential

News: non-exponential shape at low-t

Elastic Scattering : *Phase studies at larger* |t|

- $\beta^* = 90 \text{ m data}$
- small statistical uncertainties allow for tight shape constraint:

TOTEM preliminary see F. Ferro's talk

Jan Kašpar

Non-exponential at low-t, details

117th LHCC Meeting - Open Session

Low-X@Kyoto, 2014/06/17

Jan Kašpar

16

5 March, 2014

GV: dip fits vs small t + dip fits

Test: due to dataset normalization?

Glauber-Velasco

but fitted with different normalizations at low-t and dip-t

NOT due to normalization

Confirmed by further tests

Extension of Glauber-Velasco

$$\frac{f(t)}{f(0)} = \frac{e^{i(b_1|t|+b_2|t|^2)}}{\sqrt{1+a|t|}}$$

$$\frac{f(t)}{f(0)} = \frac{e^{i(b_1|t|+b_2|t|^2)}}{\sqrt{1+a|t|+d|t|^2}}$$

In principle, similar to TOTEM method

but expansion on the parton amplitude level

several other extensions e.g. Lévy generalizations tested

d: most effective, so far

original GV model: low-t fits

Figure 7: Glauber-Velasco fit, d = 0, to the TOTEM low-—t— data set.

GV model as it is deviates from TOTEM data in the low-t region

but

how about its generalization?

generalized GV model: low-t fits

data set.

generalized GV model with $d \neq 0$ describes well TOTEM data in the low-t region

but

how about its extrapolation to the dip?

gGV model extrapolations from low-t

Saturation from shadow profiles

at 7 TeV proton becomes

Blacker, NOT Edgier, and Larger

BEL⇒ BL effect

$$A(b) = 1 - |e^{-\Omega(b)}|^2$$

ISR and SppS: R.J. Glauber and J.Velasco Phys. Lett. B147 (1987) 380

b1,b2 fixed

apparent saturation:
proton is ~ black at LHC
up to
r ~ 0.7 fm

see also Lipari and Lusignoli, arXiv:1305.7216

Summary

Investigation of Glauber-Velasco model

works well in the dip region at LHC but needs extension in low-t

TOTEM: non-exponential behaviour

geometric scaling but not in the Black Disc limit

generalized Glauber-Velasco works well at low-t also at dip-t, but ...

from BEL to BL effect

Saturation up to r~0.7 fm

Saturation in p+p at LHC

Thank you!

Acknowledgments

This research was supported by HAESF and OTKA, the Hungarian National Science Fund, Grant NK101438.

Thank you!

Backup slides - Questions?

Low-X@Kyoto, 2014/06/17

1954: first evidence for finite size of p

Curve (a): spinless, structureless proton.

Curve (b): Pointlike proton, Dirac moment

Curve (c):
Point charge, point moment

Deviations from (a,b,c):

- → first: proton has a finite size
- R. Hofstadter & R. W. McAllister, Phys. Rev. 98 (1955) 217
- R. Hofstadter, Nobel lecture '61