Saturation in EPOS 3.1xx

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

K. Werner, B. Guiot, Subatech, Nantes, France Iu. Karpenko, BITP, Kiev, Ukraine

Low-x DIS, Kyoto, Japan June the 17th 2014

Outline

- EPOS Basic principles
- Saturation in EPOS
 - \rightarrow fixed Q_0^2
 - → new saturation scale Q_s²
- Preliminary results
- Summary

Elementary scatterings - flux tubes

- same energy sharing between the parallel scatterings is taken into account for cross section and particle production
 - MPI fixed by total cross-section
- many elementary collisions happening in parallel
- elementary scattering = "parton ladder" + soft component

- Parton evolutions from the projectile and the target side towards the center (small x)
- Evolution equation
 - DGLAP
- Parton ladder = quasilongitudinal color field ("flux tube")
 - relativistic string
- Intermediate gluons
 - kink singularities in relativistic strings
- Fragmentation : production of quark-antiquark pairs
 - fragments identified with hadrons

Parton-based Gribov-Regge Theory, H. J. Drescher, M. Hladik, S. Ostapchenko, T.Pierog, and K. Werner, Phys. Rept. 350 (2001) 93-289;

Parton-Based Gribov-Regge Theory

EPOS: Pomeron definition

Semi-hard Pomeron : $(\stackrel{\wedge}{s}=x^+x^-s)$

Test of semi-hard Pomeron with DIS: (Parton Distribution Function from HERA)

- Theory based Pomeron definion
 - pQCD based (DGLAP and Born)
 - large increase at small x (without saturation)
 - External pdf only for valence quark
 - F2 from HERA used to fix parameters for sea quarks and gluons

EPOS Parton Distribution Function

Cross Section Calculation: EPOS

- Gribov-Regge but with energy sharing at parton level (Parton Based Gribov Regge Theory)
- amplitude parameters fixed from QCD and pp cross section (semi-hard Pomeron)
- cross section calculation take into account interference term

$$\sigma_{\rm ine}(s) = \int d^2b \left(1 - \Phi_{\rm pp}(1, 1, s, b)\right)$$

$$\Phi_{\rm pp} (x^+, x^-, s, b) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_{\lambda}^+, x_{\lambda}^-, s, b) \right\} \\
\times F_{\rm proj} (x^+ - \sum_{\lambda=1}^l x_{\lambda}^+) F_{\rm targ} (x^- - \sum_{\lambda=1}^l x_{\lambda}^-).$$

can not use complex diagram with energy sharing: non linear effects taken into account as correction of single amplitude G

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing:

m cut Pomerons from:

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+,x_{k,\mu}^-,s,b_k) \right\} \Phi_{AB} \left(x^{\text{proj}},x^{\text{targ}},s,b \right)$$

- m and X fixed together by a complex Metropolis (Markov chain)
- → 2m strings formed from the m elementary interactions
 - energy conservation : energy fraction of the 2m strings given by X
- consistent scheme: energy sharing reduce the probability to have large m

Consistent treatment of cross section and particle production: number AND distribution of cut Pomerons depend on cross section

Number of cut Pomerons

Fluctuations reduced by energy sharing (mean can be changed by parameters)

EPOS – non-linear effects

- Well known problem with pQCD based Pomerons
 - total cross-section too high : MPI required
 - in EPOS <Pomerons> fixed by b-dep of Pomeron amplitude (slope)
 - \rightarrow for historical reason Q_0^2 was free but fixed (no energy or b dependence)
 - effective coupling introduced to mimic effect of enhanced diagrams and reduce crosssection (screening effect) to get cross-section AND multiplicity right in p-p, p-A and AA.

No effective coupling

$$A_{\text{pom}} \sim (x_1 x_2)^{\beta}$$
 $\stackrel{\circ}{\mathbb{E}}$ 110

With effective coupling

$$A_{\text{pom}} \sim x_1^{\beta} x_2^{\beta - \epsilon}$$

Parametrization

$$\varepsilon_S = a_S \beta_S Z(s,b,A)$$

 $\varepsilon_H = a_H \beta_H Z(s,b,A)$

Fixed Q_0^2 (old)

- Excellent results for soft physics
 - cross-section, multiplicity, etc ...
- Problem for hard processes
 - lack of high pt
 - no binary scaling for pA or AB

Since Q₀² is fixed both low and high pt are suppressed: in contradiction with data.

Variable $Q_s^2(s,x,b,A)$ (new)

Inspired by CGC

different saturation scale event-by-event and even Pomeron-by-Pomeron depending on momentum fraction x, impact parameter b, squared energy s or number of participants.

EPOS 3.0xx

define :

$$Q_s^2(s,x,b,A) \sim S^{A} N_{part}(b,A)$$

OK but lot of assumptions on unknown $N_{part}(b,A)$ and technically very heavy to use $A_{pom}(Q_s^2)$ in MC.

EPOS 3.1xx

Use effective coupling and define Q₂² such that

$$N_{bin}A_{pom}(Q_s^2)=N_{col}A_{eff}(s,x,b,A)$$
 after MC.

Predicted Q_s²(s,x,b,A)

Inspired by CGC

different saturation scale event-by-event and even Pomeron-by-Pomeron depending on momentum fraction x, impact parameter b, squared energy s or number of participants.

EPOS 3.0xx

define :

$$Q_s^2(s,x,b,A) \sim S^{A} N_{part}(b,A)$$

OK but lot of assumptions on unknown $N_{part}(b,A)$ and technically very heavy to use $A_{pom}(Q_s^2)$ in MC.

EPOS 3.1xx

Use effective coupling and define Q_s² such that

$$N_{bin}A_{pom}(Q_s^2)=N_{col}A_{eff}(s,x,b,A)$$
 after MC.

New Preliminary Results

- Same excellent results for soft physics
 - cross-section, multiplicity, etc ...
- Problem solved for hard processes
 - complete factorization
 - binary scaling by construction (strong assumption)

Since Q_s² is adapted to get the needed amplitude only low pt are suppressed. No change above Q_s².

Summary

Many observables difficult to describe by HEP MC described by EPOS

- consistent cross-section & particle production calculation :
 - MPI (fluctuations) and diffraction well described
- partial statistical hadronization boosted by a flow
- remnant picture
- full coherent scheme allows universal string fragmentation parameters
- Since Q_0^2 was fixed and focus given on soft Physics, hard component was suppressed in particular with nuclei.

EPOS 3

- introduce saturation scale Q_s² COMPUTED Pomeron-by-Pomeron.
- ightharpoonup impose factorization and binary scaling for hard processes above $Q_s^{\ 2}$
- conserve full coherent scheme for cross-section and particle production + 3D+1 hydro

Variable Q_s^2 allows simultaneous description of soft and hard scales. CGC picture recovered for central nuclear collisions.

Diffraction in PBGRT

Using the same formalism

Diffraction from an additional diagram

- → Same form as soft (Regge pole) but with different amplitude and width
- Low mass and high mass diffraction from the same diagram

- Parameters extracted from single diffractive (SD) cross-section
- Events with only "diff" type diagrams are diffractive

Low Mass Diffraction

Diffractive event = event with only cut diff. diagrams

- Multiple cut-diff diagrams possible
- Remnant mass given by momentum fraction transfer
- No particle production directly from diagram
- Reggeon (single string or resonance) possible
- cut-diff diagrams used for remnant mass in non-diffractive events too (cut Pomeron)

High Mass and Central Diffraction

Projectile not excited : 1 rapidity gap

Same scheme but with particle production

- Do not change cross-section
- → If only non-diffractive Pomeron are present, no mass given to remnant.
- 0, 1 or 2 rapidity gap depending on diagram exchange

Projectile and target not excited: 2 rapidity gaps

- Only projectile not excited : 1 rapidity gaps
- Additional multiplicity contribution in ND events
- Work in progress

Test of string fragmentation with LEP data

High Density Core Formation

- Heavy ion collisions or high energy proton-proton scattering:
 - the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently: **core**

- \blacksquare Each string splitted into a sequence of string segments, corresponding to widths $\delta\alpha$ and $\delta\beta$ in the string parameter space
- → If energy density from segments high enough
 - segments fused into core
 - statistical decay
 - flow from expansion
- If low density (corona)
 - segments remain hadrons
 - string fragmentation

Core Effect on Total Multiplicity

 Core hadronization doesn't change general event description.

Remnants

Forward particles mainly from projectile remnant

Forward hadronization from remnant:

- At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at midrapidity (baryon free)

Remnant considered as universal object : same behavior at low or high energy

Remnants in EPOS

In EPOS: any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
 - Baryon stopping
- → Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Baryons and Remnants

Parton ladder string ends:

- → Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)
 - 2 strings approach :
 - \bullet $\overline{\Omega}$ / Ω always > 1
 - → But data < 1 (Na49)</p>

- **→** EPOS
 - No "first string" with valence quarks : all strings equivalent
 - Wide range of excited remnants (hadronization via light resonance decay, string fragmentation or heavy quark-bag statistical decay)

Forward Baryons (low energy)

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 2

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy!

Without remnant, string fragmentation has to be changed for baryon production

Forward Baryons (high energy)

- Core hadronization doesn't change baryon transport.
 - Remnant effect for baryon transport

Core Effect on Particle Yield

Core hadronization change particle ratio

heasier to produce strange baryons

EPOS LHC

Detailed description can be achieved

- identified spectra
- \rightarrow p_t behavior driven by collective effects (flow)

EPOS LHC

Detailed description can be achieved

- p_t behavior driven by collective effects (flow)
 - \blacksquare particles with p_t ~ 0.5 GeV/c boosted up to p_t=2-3 GeV/c
 - ighthapproximation in high p_t particles ($p_t \sim 10 \text{ GeV/c}$) suppressed by energy loss in fluid
- \rightarrow spectrum dominated by string (jet) particles only for p_t > 5 GeV/c

p-Pb: Increased Effects

Flow depends on N_{ch}

- ightharpoonup large N_{ch} more often in pPb than in pp but same strength for same N_{ch}
- ightharpoonup R_{pPb} mass dependent (like in dAu @ RHIC) : for p_t < 6 GeV/c, R_{ppb}=1 by chance ?

MPI reduction correct for low p_t: mutliplicity well reproduced (no tuning).

Initial state suppression artificially too strong at high p,

Radius of Particle Emission

Space-time structure strongly affected (here 900 GeV)

Bose-Einstein Correlations

Consequences for Bose-Einstein correlations

ALICE data.

Radii R from exponential fit. KT1= [100, 250], KT3= [400, 550], KT5= [700, 1000]

PbPb @ LHC

jets in PbPb @ LHC

- Jet interacts in bulk of matter
 - parton energy loss
 - boost at the surface

Correlations in PbPb@LHC

Fourier coefficient for most central events

High Energy Hadronic Interactions : HEP view

Problem with some observables (UE, <pt>, ratios ...)

High Energy Hadronic Interactions : Heavy Ion view

General case: valid for pp if enough particles are produced!

High Energy Hadronic Interactions: EPOS LHC

- Local high energy densities have different hadronization :
 - Microcanonical decay
 - flow

General case: valid for pp if enough particles are produced!