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Reminder of the context 

•  Forward particle production in d+Au collisions 
 
provided several signals of parton saturation at RHIC: 
suppression of hadron production and di-hadron correlations 
in p+A vs p+p 

 
•  Mid-rapidity at LHC ≠ forward rapidity at RHIC 

 
forward rapidities are also needed at the LHC be to sensitive 
to non-linear effects 
 

•  Forward di-jet production in p+Pb collisions 
 
from low-pT hadrons to high-pT jets: the small-x formalism 
needs to be extended 



LHC di-jet mid-rapidity data 
•  no sign of nuclear effects on the di-jet imbalance 
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the di-jet imbalance is independent of A, and not related to Qs 
all due to 3-jet final states, and perhaps some non-perturbative intrinsic kT 

one needs to look at forward di-jet systems to see non-linear effects 
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scanning the wave functions: 

central rapidities probe moderate x 
xp ~ xA < 1 

forward/central doesn’t probe much smaller x 
xp ~ 1, xA < 1 

xp increases    xA ~ unchanged 

forward rapidities probe small x 
xp ~ 1, xA << 1 

xp ~ unchanged    xA decreases 



kT factorization for forward di-jets 
•  a factorization can be established in the small x limit, for nearly 

back-to-back di-jets 

Dominguez, CM, Xiao and Yuan (2011) 
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•  only valid in asymmetric situations 

does not apply with unintegrated parton densities for both colliding projectiles 

Collins and Qiu (2007), Xiao and Yuan (2010) 

with 

Qs, |pt1 + pt2| ⌧ |pt1|, |pt2|



Simplified factorization formula 
•  assuming in addition 

Kutak and Sapeta (2012) 
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involving only one unintegrated gluon density, the one also involved in F2 

it is related to the dipole scattering amplitude N (x, r)
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•  we use two different unintegrated gluons, which both describe F2 
they are solutions of two small-x evolution equations, reflecting two 

proposed prescriptions to improve the LL Balitsky-Kovchegov equation 

saturation effects are expected in the so-called geometric scaling window, 
when the incoming gluon momenta is not too large compared to QS 



Running-coupling BK evolution 
•  the Balitsky-Kovchegov equation 
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Balitsky (1996), Kovchegov (1998) 
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Running-coupling BK evolution 

taken into account by the substitution 
Kovchegov 

 

Weigert 

Balitsky 

RC corrections represent most of the NLO contribution  

(2007) 

•  running-coupling (RC) corrections to the BK equation 

•  the Balitsky-Kovchegov equation 
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Non-linear CCFM evolution 
•  a non-linear gluon cascade with coherence effects 

Kutak, Golec-Biernat, Jadach and Skrzypek (2012) 

solution compatible with F2 data not available yet 
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•  a non-linear gluon cascade with coherence effects 

Kutak, Golec-Biernat, Jadach and Skrzypek (2012) 

solution compatible with F2 data not available yet 

Kutak and Stasto (2005) •  for now use simpler version 
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this is BK + running coupling + high-pt improvements 
- kinematical constraints 
- sea quark contributions 
- non-singular pieces of the splitting functions 

note: this is an equation for the impact-parameter integrated gluon density  



Forward di-jet spectrum in p+p 
•  obtained with unintegrated gluons constrained from e+p low-x data 
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pT1 dependence Δφ dependence 

- similar shape at low pt 
- KS better at large pt 

rcBK: normalization uncentainty due to impact parameter integration 

- rcBK not plotted away from Δφ = π 
- kink due to cone radius of 0.5 



Nuclear modification in p+Pb 
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- rcBK: not correct at large pt 
- KS: reaches unity at large pt 

observable very sensitive 
to non-linear effects 
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•  with a free parameter to vary the nuclear saturation scale 
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caveat: near Δφ = π, our simplifying assumption     is not valid Qs ⌧ |pt1 + pt2|

potentially big effects depending on the value of the nuclear saturation scale 



CMS central-forward di-jet data 
•  non-linear effects are small, as expected 

van Hameren, Kotko, Kutak, and Sapeta (2014) 

Kang, Vitev and Xing (2012) 

but this is a good test of the formalism, 
which does a good job describing the data 



Conclusions 
 

•  Non-linear evolution of gluon density in Au nucleus at RHIC: 
 
- suppression of single hadron production in d+Au vs p+p 
 
- suppression of back-to-back correlations of di-hadrons in d+Au vs p+p 

 
•  Our goal: extend di-hadron calculation to di-jets, motivate LHC 

measurement 
 
- our preliminary results are encouraging 

•  Several improvements needed: 
 
- implement full factorization formula, to go beyond  
 
- use solution of non-linear CCFM equation when available 
 
- correct treatment of nuclear impact-parameter dependence 
 
- estimate effects of jet fragmentation 

Qs ⌧ |pt1 + pt2|


