Forward di-jet production in p+Pb collisions

Cyrille Marquet

Centre de Physique Théorique Ecole Polytechnique & CNRS

A. van Hameren, P. Kotko, K. Kutak, CM and S. Sapeta, 1402.5065

Reminder of the context

Forward particle production in d+Au collisions

provided several signals of parton saturation at RHIC: suppression of hadron production and di-hadron correlations in p+A vs p+p

Mid-rapidity at LHC ≠ forward rapidity at RHIC

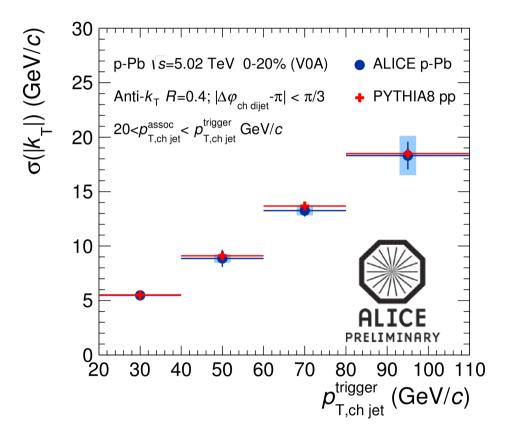
forward rapidities are also needed at the LHC be to sensitive to non-linear effects

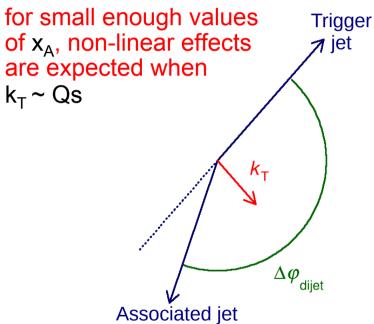
Forward di-jet production in p+Pb collisions

from low- p_T hadrons to high- p_T jets: the small-x formalism needs to be extended

LHC di-jet mid-rapidity data

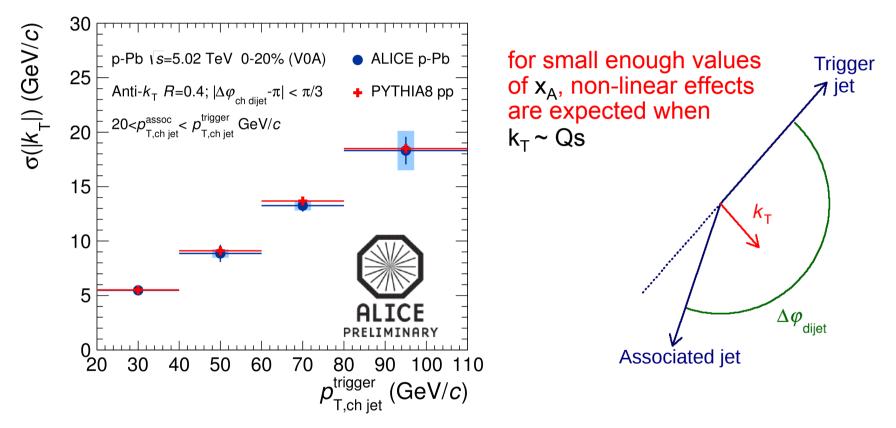
no sign of nuclear effects on the di-jet imbalance





LHC di-jet mid-rapidity data

no sign of nuclear effects on the di-jet imbalance



the di-jet imbalance is independent of A, and not related to Qs all due to 3-jet final states, and perhaps some non-perturbative intrinsic k_T one needs to look at forward di-jet systems to see non-linear effects

Two-particle final-state kinematics

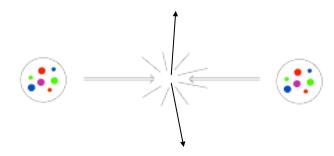
$$k_{1}, y_{1}$$

$$k_{2}, y_{2}$$

$$x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$$

final state:
$$k_1, y_1$$
 k_2, y_2 $x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$ $x_A = \frac{k_1 e^{-y_1} + k_2 e^{-y_2}}{\sqrt{s}}$

scanning the wave functions:



$$x_p \sim x_A < 1$$

central rapidities probe moderate x

Two-particle final-state kinematics

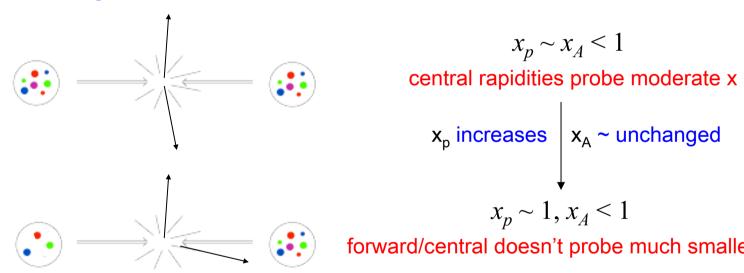
$$k_{1}, y_{1}$$

$$k_{2}, y_{2}$$

$$x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$$

final state:
$$k_1, y_1$$
 k_2, y_2 $x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$ $x_A = \frac{k_1 e^{-y_1} + k_2 e^{-y_2}}{\sqrt{s}}$

scanning the wave functions:



$$x_p \sim x_A < 1$$

$$x_p$$
 increases $x_A \sim \text{unchanged}$ $x_p \sim 1, x_A < 1$

forward/central doesn't probe much smaller x

Two-particle final-state kinematics

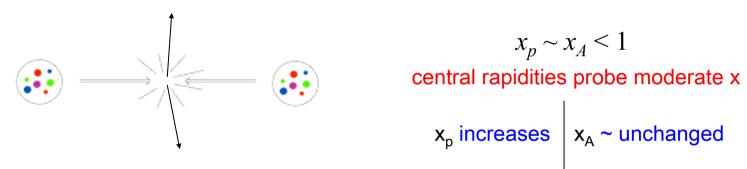
$$k_{1}, y_{1}$$

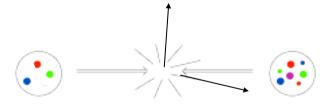
$$k_2, y_2$$

$$x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$$

final state:
$$k_1, y_1 k_2, y_2 x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}} x_A = \frac{k_1 e^{-y_1} + k_2 e^{-y_2}}{\sqrt{s}}$$

scanning the wave functions:





$$x_p \sim x_A < 1$$

$$x_p$$
 increases $x_A \sim \text{unchanged}$ $x_p \sim 1, x_A < 1$

forward/central doesn't probe much smaller x

$$x_p \sim \text{unchanged} \quad x_A \text{ decreases}$$
 $x_p \sim 1, x_A << 1$

forward rapidities probe small x

k_T factorization for forward di-jets

• a factorization can be established in the small x limit, for nearly back-to-back di-jets $Q_s, |\mathbf{p_{t1}} + \mathbf{p_{t2}}| \ll |\mathbf{p_{t1}}|, |\mathbf{p_{t2}}|$

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} = \frac{\alpha_s^2}{(x_1 x_2 S)^2} \left[\sum_q x_1 f_{q/p}(x_1, \mu^2) \sum_i H_{qg}^{(i)} \mathcal{F}_{qg}^{(i)}(x_2, |\mathbf{p_{1t}} + \mathbf{p_{2t}}|) \right]$$

Dominguez, CM, Xiao and Yuan (2011)

$$+\frac{1}{2}x_1f_{g/p}(x_1,\mu^2)\sum_{i}H_{gg}^{(i)}\mathcal{F}_{gg}^{(i)}(x_2,|\mathbf{p_{1t}}+\mathbf{p_{2t}}|)\right]$$

with
$$x_1 = \frac{1}{\sqrt{S}} \left(p_{1t} e^{y_1} + p_{2t} e^{y_2} \right)$$
, $x_2 = \frac{1}{\sqrt{S}} \left(p_{1t} e^{-y_1} + p_{2t} e^{-y_2} \right)$

but it involves several unintegrated gluon densities $\mathcal{F}_{qg}^{(i)}$ and $\mathcal{F}_{gg}^{(i)}$ and their associated hard matrix elements

k_T factorization for forward di-jets

• a factorization can be established in the small x limit, for nearly back-to-back di-jets $Q_s, |\mathbf{p_{t1}} + \mathbf{p_{t2}}| \ll |\mathbf{p_{t1}}|, |\mathbf{p_{t2}}|$

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} = \frac{\alpha_s^2}{(x_1 x_2 S)^2} \left[\sum_q x_1 f_{q/p}(x_1, \mu^2) \sum_i H_{qg}^{(i)} \mathcal{F}_{qg}^{(i)}(x_2, |\mathbf{p_{1t}} + \mathbf{p_{2t}}|) \right]$$

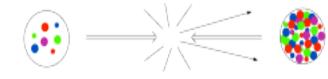
Dominguez, CM, Xiao and Yuan (2011)

$$+\frac{1}{2}x_1f_{g/p}(x_1,\mu^2)\sum_{i}H_{gg}^{(i)}\mathcal{F}_{gg}^{(i)}(x_2,|\mathbf{p_{1t}}+\mathbf{p_{2t}}|)\right]$$

with
$$x_1 = \frac{1}{\sqrt{S}} \left(p_{1t} e^{y_1} + p_{2t} e^{y_2} \right)$$
, $x_2 = \frac{1}{\sqrt{S}} \left(p_{1t} e^{-y_1} + p_{2t} e^{-y_2} \right)$

but it involves several unintegrated gluon densities $\mathcal{F}_{qg}^{(i)}$ and $\mathcal{F}_{gg}^{(i)}$ and their associated hard matrix elements

only valid in asymmetric situations



Collins and Qiu (2007), Xiao and Yuan (2010)

does not apply with unintegrated parton densities for both colliding projectiles

Simplified factorization formula

• assuming in addition $Q_s \ll |\mathbf{p_{t1}} + \mathbf{p_{t2}}|$

one recovers the formula used in the high-energy factorization framework

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} = \sum_{a,c,d} \frac{1}{16\pi^3 (x_1 x_2 S)^2} |\overline{\mathcal{M}_{ag \to cd}}|^2 x_1 f_{a/p}(x_1, \mu^2) \, \mathcal{F}_A(x_2, |\mathbf{p_{1t}} + \mathbf{p_{2t}}|) \frac{1}{1 + \delta_{cd}} \; .$$

involving only one unintegrated gluon density, the one also involved in F₂

Kutak and Sapeta (2012)

it is related to the dipole scattering amplitude $\mathcal{N}(x,r)$

$$\mathcal{F}_A(x,k) = \frac{N_c}{\alpha_s(2\pi)^3} \int d^2b \int d^2r \ e^{-i\mathbf{k}\cdot\mathbf{r}} \nabla_r^2 \ \mathcal{N}(x,r)$$

Simplified factorization formula

• assuming in addition $Q_s \ll |\mathbf{p_{t1}} + \mathbf{p_{t2}}|$

one recovers the formula used in the high-energy factorization framework

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} = \sum_{a,c,d} \frac{1}{16\pi^3 (x_1 x_2 S)^2} |\overline{\mathcal{M}_{ag \to cd}}|^2 x_1 f_{a/p}(x_1, \mu^2) \, \mathcal{F}_A(x_2, |\mathbf{p_{1t}} + \mathbf{p_{2t}}|) \frac{1}{1 + \delta_{cd}} \; .$$

involving only one unintegrated gluon density, the one also involved in F₂

Kutak and Sapeta (2012)

it is related to the dipole scattering amplitude $\mathcal{N}(x,r)$

$$\mathcal{F}_A(x,k) = \frac{N_c}{\alpha_s(2\pi)^3} \int d^2b \int d^2r \ e^{-i\mathbf{k}\cdot\mathbf{r}} \nabla_r^2 \ \mathcal{N}(x,r)$$

saturation effects are expected in the so-called geometric scaling window, when the incoming gluon momenta is not too large compared to \mathbf{Q}_{S}

we use two different unintegrated gluons, which both describe F₂

they are solutions of two small-x evolution equations, reflecting two proposed prescriptions to improve the LL Balitsky-Kovchegov equation

Running-coupling BK evolution

the Balitsky-Kovchegov equation
 Balitsky (1996), Kovchegov (1998)

$$\frac{\partial \mathcal{N}(x,r)}{\partial \ln(x_0/x)} = \bar{\alpha} \int \frac{d^2r_1}{2\pi} \frac{r^2}{r_1^1 r_2^2} \, \left[\mathcal{N}(x,r_1) + \mathcal{N}(x,r_2) - \mathcal{N}(x,r) - \mathcal{N}(x,r_1) \mathcal{N}(x,r_2) \right]$$
 saturation
$$r_2 = |\mathbf{r} - \mathbf{r}_1| \qquad \qquad \text{linear evolution : BFKL}$$

Fourier Transform of dipole amplitude $\mathcal{N}(x,r)$ = unintegrated gluon distribution

Running-coupling BK evolution

the Balitsky-Kovchegov equation
 Balitsky (1996), Kovchegov (1998)

$$\frac{\partial \mathcal{N}(x,r)}{\partial \ln(x_0/x)} = \bar{\alpha} \int \frac{d^2r_1}{2\pi} \frac{r^2}{r_1^1 r_2^2} \left[\mathcal{N}(x,r_1) + \mathcal{N}(x,r_2) - \mathcal{N}(x,r) - \mathcal{N}(x,r_1) \mathcal{N}(x,r_2) \right]$$
saturation
$$r_2 = |\mathbf{r} - \mathbf{r}_1| \qquad \text{linear evolution : BFKL}$$

Fourier Transform of dipole amplitude $\mathcal{N}(x,r)$ = unintegrated gluon distribution

running-coupling (RC) corrections to the BK equation

taken into account by the substitution

$$\alpha_s(\mathbf{r}^2) = \left[-\frac{11N_c - 2N_f}{12\pi} \ln\left(\mathbf{r}^2 \Lambda_{QCD}^2\right) \right]^{-1}$$

$$\frac{\bar{\alpha}}{2\pi} \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} \xrightarrow{\text{Weigert}} \frac{N_c}{2\pi^2} \left[\frac{\alpha_s((\mathbf{x} - \mathbf{z})^2)}{(\mathbf{x} - \mathbf{z})^2} - 2 \frac{\alpha_s((\mathbf{x} - \mathbf{z})^2)\alpha_s((\mathbf{z} - \mathbf{y})^2)}{\alpha_s((\mathbf{x} - \mathbf{y})^2)} + \frac{\alpha_s((\mathbf{z} - \mathbf{y})^2)}{(\mathbf{z} - \mathbf{y})^2} \right]$$

$$\frac{N_c \alpha_s((\mathbf{x} - \mathbf{y})^2)}{2\pi^2} \left[\frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} + \frac{1}{(\mathbf{x} - \mathbf{z})^2} \left(\frac{\alpha_s((\mathbf{x} - \mathbf{z})^2)}{\alpha_s((\mathbf{z} - \mathbf{y})^2)} - 1 \right) + \frac{1}{(\mathbf{z} - \mathbf{y})^2} \left(\frac{\alpha_s((\mathbf{z} - \mathbf{y})^2)}{\alpha_s((\mathbf{x} - \mathbf{z})^2)} - 1 \right) \right]$$

RC corrections represent most of the NLO contribution

Non-linear CCFM evolution

a non-linear gluon cascade with coherence effects

Kutak, Golec-Biernat, Jadach and Skrzypek (2012)

solution compatible with F2 data not available yet

Non-linear CCFM evolution

a non-linear gluon cascade with coherence effects

Kutak, Golec-Biernat, Jadach and Skrzypek (2012)

solution compatible with F2 data not available yet

for now use simpler version Kutak and Stasto (2005)

$$\mathcal{F}_{p}(x,k^{2}) = \mathcal{F}_{p}^{(0)}(x,k^{2}) + \frac{\alpha_{s}(k^{2})N_{c}}{\pi} \int_{x}^{1} \frac{dz}{z} \int_{k_{0}^{2}}^{\infty} \frac{dl^{2}}{l^{2}} \left\{ \frac{l^{2}\mathcal{F}_{p}(\frac{x}{z},l^{2})\theta(\frac{k^{2}}{z}-l^{2}) - k^{2}\mathcal{F}_{p}(\frac{x}{z},k^{2})}{|l^{2}-k^{2}|} + \frac{k^{2}\mathcal{F}_{p}(\frac{x}{z},k^{2})}{|4l^{4}+k^{4}|^{\frac{1}{2}}} \right\}
+ \frac{\alpha_{s}(k^{2})}{2\pi k^{2}} \int_{x}^{1} dz \left[\left(P_{gg}(z) - \frac{2N_{c}}{z} \right) \int_{k_{0}^{2}}^{k^{2}} dl^{2} \mathcal{F}_{p}\left(\frac{x}{z},l^{2}\right) + z P_{gq}(z) \Sigma\left(\frac{x}{z},k^{2}\right) \right]
- \frac{2\alpha_{s}^{2}(k^{2})}{R^{2}} \left[\left(\int_{k^{2}}^{\infty} \frac{dl^{2}}{l^{2}} \mathcal{F}_{p}(x,l^{2}) \right)^{2} + \mathcal{F}_{p}(x,k^{2}) \int_{k^{2}}^{\infty} \frac{dl^{2}}{l^{2}} \ln\left(\frac{l^{2}}{k^{2}}\right) \mathcal{F}_{p}(x,l^{2}) \right],$$

this is BK + running coupling + high-pt improvements

- kinematical constraints
- sea quark contributions
- non-singular pieces of the splitting functions

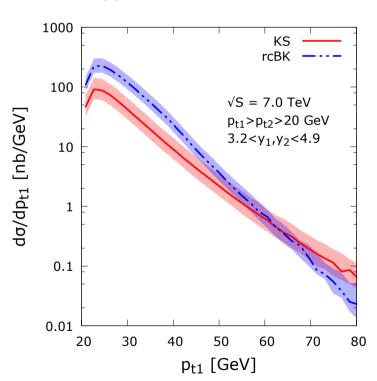
note: this is an equation for the impact-parameter integrated gluon density

Forward di-jet spectrum in p+p

obtained with unintegrated gluons constrained from e+p low-x data

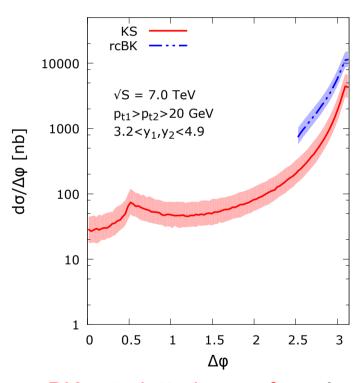
rcBK: normalization uncentainty due to impact parameter integration

p_{T1} dependence



- similar shape at low pt
- KS better at large pt

Δφ dependence



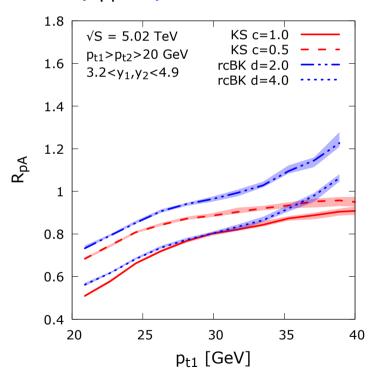
- rcBK not plotted away from $\Delta \phi = \pi$ - kink due to cone radius of 0.5

Nuclear modification in p+Pb

with a free parameter to vary the nuclear saturation scale

$$Q_{sA}^2=d~Q_{sp}^2$$
 (rcBK case) or $~R^2 \rightarrow R_A^2=R^2~A^{1/3}/c$ (KS case)

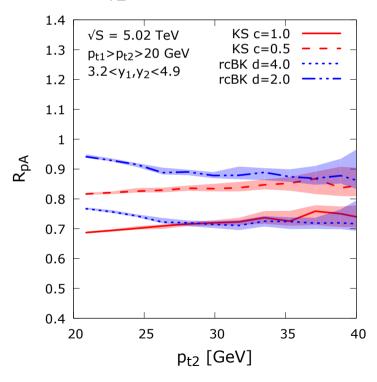
p_{T1} dependence



- rcBK: not correct at large pt

- KS: reaches unity at large pt

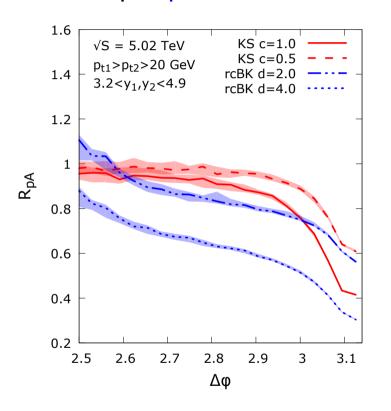
p_{T2} dependence



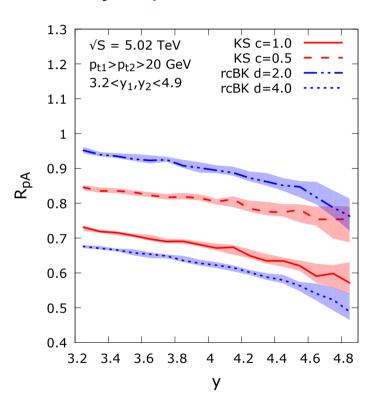
observable very sensitive to non-linear effects

Nuclear modification in p+Pb

Δφ dependence



y dependence

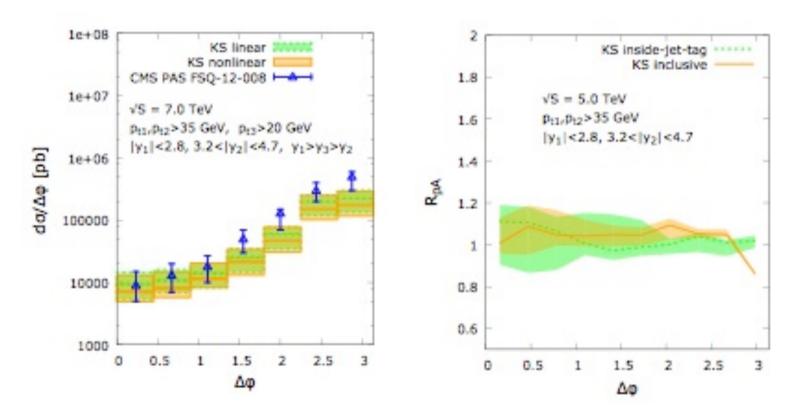


potentially big effects depending on the value of the nuclear saturation scale

caveat: near $\Delta \phi = \pi$, our simplifying assumption $Q_s \ll |\mathbf{p_{t1}} + \mathbf{p_{t2}}|$ is not valid

CMS central-forward di-jet data

non-linear effects are small, as expected



but this is a good test of the formalism, which does a good job describing the data

van Hameren, Kotko, Kutak, and Sapeta (2014)

Conclusions

- Non-linear evolution of gluon density in Au nucleus at RHIC:
 - suppression of single hadron production in d+Au vs p+p
 - suppression of back-to-back correlations of di-hadrons in d+Au vs p+p
- Our goal: extend di-hadron calculation to di-jets, motivate LHC measurement
 - our preliminary results are encouraging
- Several improvements needed:
 - implement full factorization formula, to go beyond $Q_s \ll |\mathbf{p_{t1}} + \mathbf{p_{t2}}|$
 - use solution of non-linear CCFM equation when available
 - correct treatment of nuclear impact-parameter dependence
 - estimate effects of jet fragmentation