

TOTEM elastic scattering etc.

Low-x meeting
YUKAWA INSTITUTE, KYOTO, JAPAN
June 17-21 2014

Fabrizio Ferro – INFN Genova

on behalf of the TOTEM Collaboration

Overview

- TOTEM detectors
- Elastic scattering at 7 and 8 TeV
- Coulomb-Nuclear Interference
- ρ determination
- dN_{ch}/dη (TOTEM only)
- Outlook: consolidation and upgrade

Experimental setup

RP 220

Inelastic Telescopes:

TOTEM

charged particles in inelastic events:→ multiplicities, rapidity gaps

→ Inelastic Trigger

T1: 3.1 < $|\eta|$ < **4.7**, $p_T > 100 \text{ MeV}$

T2: 5.3 < $|\eta|$ < **6.5**, p_T > 40 MeV

Roman Pots:

elastic & diffractive protons close to outgoing beams

→ Proton Trigger

Inelastic telescopes

Inelastic event counting, charged multiplicity, rapidity gaps

- 5 planes of Cathode Strip Chambers (CSC)
- 6 chambers per plane
- $3.1 < |\eta| < 4.7$

T2

- 10 planes of Gas Electron Multipliers (GEM)
- $5.3 < |\eta| < 6.5$

Roman Pot detectors

Leading proton detection

- Roman pot stations in the LHC tunnel at 147m and 220m from IP (both sides)
- > 10 edgeless (<50μm) Si micro strip detectors per pot
- > Resolution ~15μm

Roman pot unit

10 edgeless Si detectors

Beam optics and proton transport

$$y_{RP} = L_{y}\Theta_{y}^{*} + v_{y}y^{*}$$

$$\left| y_{RP} = L_{y} \Theta_{y}^{*} + v_{y} y^{*} \right| \left| x_{RP} = L_{x} \Theta_{x}^{*} + v_{x} x^{*} + D_{x} \xi \right|$$

Reconstruction of proton kinematics needs an excellent understanding of the LHC optics.

arXiv:1406.0546

Running scenarios

Different running scenario → different kinematic acceptance

- Diffraction: $\xi > \sim 0.01$ low cross-section processes (hard diffraction)
- Elastic scattering: large |t|
- Diffraction: all ξ if $|t| > \sim 10^{-2} \, GeV^2$
- Elastic scattering: low to mid |t|
- **Total Cross-Section**
- Elastic scattering: very low |t| Coulomb-Nuclear Interference
- **Total Cross-Section**

TOTEM operations

E	eta^*	RP approach	\mathcal{L}_{int}	\mathcal{L}_{int} t range	
(TeV)	(m)		$(\mu \mathrm{b}^{-1})$	(GeV^2)	events
7	90	4.8 - 6.5σ	83	$7 \cdot 10^{-3} - 0.5$	1M
	90	10σ	1.7	0.02 - 0.4	14k
	3.5	7σ	0.07	0.36 - 3	66k
	3.5	18σ	2.3	2 - 3.5	10k
8	90	$6-9\sigma$	60	0.01 - 1	8M
	1000	3σ	20	$6.10^{-4} - 0.2$	0.4M
2.76	11	$5\text{-}13\sigma$		0.05-0.6	45k

EPL 101 (2013) 21002] EPL 96 (2011) 21002] EPL 95 (2011) 41001]

Elastic differential cross section

Forward peak

- Shrinking of the peak confirmed
 - $t_{dip}(7 \text{ TeV}) = 0.53 \text{ GeV}^2$
 - $t_{dip}(ISR) \sim 1.4 \text{ GeV}^2$

 Nearly exponential decrease at low t

$$B_{7\text{TeV}} = (19.89 \pm 0.27) \text{ GeV}^{-2}$$

$$B_{8\text{TeV}} = (19.90 \pm 0.30) \text{ GeV}^{-2}$$

Elastic scattering at very low t

Access to the Coulomb-Nuclear interference region

E	eta^*	RP approach	\mathcal{L}_{int}	t range	Elastic
(TeV)	(m)		$(\mu \mathrm{b}^{-1})$	(GeV^2)	events
7	90	4.8 - 6.5σ	83	$7 \cdot 10^{-3} - 0.5$	1M
	90	10σ	1.7	0.02 - 0.4	14k
	3.5	7σ	0.07	0.36 - 3	66k
	3.5	18σ	2.3	2 - 3.5	10k
0	30	0-90	00	0.01 - 1	O.CM
	1000	3σ	20	$6.10^{-4} - 0.2$	0.4M
2.70	11	5-130		0.05-0.0	45K

Coulomb-Nuclear interference

- Studying the interference region
 - gives sensitivity to the nuclear phase
 - allows to separate Coulomb and nuclear effects

$$\frac{d\sigma}{dt} \propto |\mathcal{A}^{C+H}|^2 \qquad \mathcal{A}^{C+H} = \text{interference formula}(\mathcal{A}^C, \mathcal{A}^H)$$

Interference formulas

- Simplified West-Yennie (SWY)
 - a Feynman diagram approach
 - purely exponential nuclear amplitude and constant phase
- Kundrat-Lokaijcek (KL)
 - eikonal approach
 - no limitations on the nuclear amplitude

Effects of the CNI (simulation)

• low t (for any formula) mainly due to $\rho = \frac{\Re A}{\Im A}(t=0)$

• higher t (for KL formula) from the functional form of the phase

Higher t studies (with β *=90m optics)

Deviation of $d\sigma/dt$ from pure exponential:

Fit
$$d\sigma/dt = A e^{-B(t)/t}$$
, with $B(t) = b_0$ or $B(t) = b_0 + b_1 t$ or $B(t) = b_0 + b_1 t + b_2 t^2$

Pure exponential form excluded at \sim 7 σ significance.

Consequences:

- SWY formula ruled out
 - dσ/dt^{H+C} can't be described by pure exponential
 - SWY CNI cannot produce non-exponentiality
 - $d\sigma/dt^H$ can't be described by pure exponential

determination

ρ from fits with different forms for B(t) and phase(t)

0.15 0.1 0.05 -0.05pp (PDG) pp (PDG) -0.1- COMPETE preferred-model pp fit -0.15— TOTEM indirect at $\sqrt{s} = 7 \text{ TeV}$ TOTEM direct at $\sqrt{s} = 8 \text{ TeV}$ -0.2 10^{2} 10^{3} 10^{4} \sqrt{s} (GeV)

Indirect measurement at 7 TeV:

Indirect measurement at 7 TeV:

From optical theorem:
$$\rho^2 = 16\pi \mathcal{L}_{int} \frac{dN_{el}/dt|_{t=0}}{(N_{el} + N_{inel})^2} - 1 = 0.009 \pm 0.056 \rightarrow |\rho| = 0.145 \pm 0.091$$

Elastic cross section

Forward $dN_{ch}/d\eta$ at 8 TeV with displaced vertex

Run with shifted collision po → asymmetric T2 acceptant

Low-x meeting, 17-21/6/2014

Fabrizio Ferro - INFN

TOTEM consolidation and upgrade

In 2012: successful data taking together with CMS in special runs

- first studies of central production, diffractive dijets, other hard diffractive processes Problems: limited statistics, pileup
- upgrade RP system for operation at higher luminosities
- resolve event pileup: timing measurement, multi-track resolution

see also CT-PPS talk

Low-x meeting, 17-21/6/2014

Fabrizio Ferro - INFN

Consolidation: RP tracking

RP stations at 147 moved to ~210m. One rotated by 8° to improve multitrack tracking efficiency.

Timing in vertical RP

- Integrated luminosity of 100 pb-1 is necessary to probe O(pb) cross-sections
 - High statistics hard diffractive processes in CD (jet physics)
 - Study of BR and quantum numbers of gluonic states candidates
 - Missing mass candidates with inclusive production cross section of O(pb)
- Such integrated luminosity becomes reasonable for high β runs if a pile up μ ~0.5 is generated by increasing bunch population
- Forward physics in special runs with vertical pots requires presence of timing to identify the collision vertex
- Timing improves background reduction also in low pileup runs
- Different detector options (diamonds, fast silicon)
- TDR in preparation
- Tests ongoing

Future physics program

 Elastic scattering, total, inelastic, diffractive cross sections at the new LHC energies

- Physics search on low mass spectroscopy
 - gluonic states
 - diffractive χ_c
- Central diffractive jet production
- Missing/escaping mass studies
- CT-PPS program (see dedicated talk)

Conclusions

- During Run I TOTEM has measured the elastic scattering, the total and the inelastic cross sections at 7 and 8 TeV
- The elastic scattering has been studied in a wide t range.
 Measurements at very low t excluded a purely exponential
 behavior of the forward peak and allowed the study of the
 Coulomb-Nuclear interference
- An extensive study of the systematic effects has been carried on
- A measurement of the charged multiplicity using runs with a displaced vertex has been done complementary to the joint CMS-TOTEM measurement
- An extensive consolidation and upgrade program is being carried on with a new setup in the RP region

Looking forward to new results from Run II

Back up slides

Low-x meeting, 17-21/6/2014

Elastic Scattering in the Coulomb-Nuclear Interference Region

"central phase":

$$\arg F(t) = \frac{\pi}{2} - \operatorname{atan} \frac{\cot p_0}{1 - \frac{t}{t_d}}$$

constant phase:

$$\arg F(t) = p_0$$

$$\arg F(t) = p_0 + p_A \exp\left[\kappa \left(\ln \frac{t}{t_m} - \frac{t}{t_m} + 1\right)\right]$$

Only 1 free parameter: $p_0 \rightarrow$

$$\rho = \frac{\Re F^H(0)}{\Im F^H(0)} = \cot \arg F^H(0) = \cot p_0$$

Preliminary results with 1km optics

Systematics


```
alignment:
shift in \vartheta_r^* (dgn. combination)
alignment:
shift in \vartheta_{v}^{*}, R mode (dgn. combination)
alignment:
shift in \theta_{\nu}^*, D mode (dgn. combination)
alignment + optics:
                    (dgn. combination)
x-y tilt
optics:
\vartheta_{x,y}^* scaling – mode 1 (dgn. combination)
optics:
\vartheta_{x,y}^* scaling – mode 2 (dgn. combination)
acceptance correction:
unc. of beam divergence RMS (dgn. combination)
acceptance correction:
beam divergence L-R asymmetry (dgn. combination)
acceptance correction:
beam divergence non-gaussianity (dgn. combination)
3-out-of-4 efficiency:
slope uncertainty
                      (dgn. combination)
3-out-of-4 efficiency:
slope uncertainty
                      (2nd dgn. combination)
beam momentum:
offset
                    (dgn. combination)
unfolding:
x smearing dependence (dgn. combination)
unfolding:
y smearing dependence (dgn. combination)
unfolding:
model dependence (dgn. combination)
normalisation:
luminosity and efficiencies (dgn. combination)
\pm 1 \sigma envelope of analysis uncertainties
```

Preliminary Result for p

Pure exponential form ruled out

→ SWY interference formula ruled out

(cannot produce non-exponentiality)

Constant B with peripheral phase unlikely but possible (if non-exponentiality is caused entirely by peripheral phase). Under study.

 ρ from fits with different forms for B(t) and phase(t)

Phase:

central or constant

peripheral

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}^{\textit{had}}$$

 σ_{total} = 101.7 ± 2.9 mb luminosity independent [PRL 111 (2013) 012001]

Overview of Running Scenarios

In the Upgrade Proposal: Pileup and Luminosity Reach

β^*	cr. angle	ε_N	N	k	μ	Luminosity	
[m]	$[\mu \mathrm{rad}]$	$[\mu \mathrm{m}\mathrm{rad}]$	$[10^{11} \text{ p/b.}]$	bunches		$[{\rm cm}^{-2}{\rm s}^{-1}]$	
2500	0	2	$0.7 \div 1.5$	2	$0.004 \div 0.02$	$(1.2 \div 5.6) \times 10^{27}$	$= (0.1 \div 0.5) \mathrm{nb}^{-1}/24 \mathrm{h}$
90	0	2	$0.5 \div 1.5$	156	$0.06 \div 0.5$	$(1.3 \div 12) \times 10^{30}$	$= (0.1 \div 1) \mathrm{pb}^{-1}/24 \mathrm{h}$
90	100	2	$0.5 \div 1.5$	1000	$0.06 \div 0.5$	$(0.9 \div 7.7) \times 10^{31}$	$= (0.8 \div 7) \mathrm{pb}^{-1}/24 \mathrm{h}$
11	$310 \div 390$	$1.9 \div 3.75$	1.15	$2520 \div 2760$	$1.3 \div 2.5$	$(5.3 \div 9.5) \times 10^{32}$	$= (46 \div 82) \mathrm{pb}^{-1}/24 \mathrm{h}$
				$(\Delta t = 25 \text{ns})$			
0.5	$310 \div 390$	$1.9 \div 3.75$	1.15	$2520 \div 2760$	$19 \div 34$	$(0.8 \div 1.3) \times 10^{34}$	$= (0.7 \div 1.1) \text{fb}^{-1}/24 \text{h}$
				$(\Delta t = 25\mathrm{ns})$			

- β * = 2500 m: for elastic Coulomb-Nuclear Interference studies starting in 2016 (needs additional magnet cables): not discussed here.
- β * = 11 m: alternative idea for low-beta physics at each start of fill before squeeze: not further elaborated, not discussed here.

•
$$\beta$$
* = 90 m

•
$$\beta$$
* = 90 m
• β * = 0.4 – 0.6 m

Subjects of this presentation/discussion