CONFORMAL REGGETHEORY FROM ADS/CFT AND DIS AT SMALL-X

Chung-ITan, Brown University
Low-xWorkshop, Kyoto, Japan June 16-22, 2014

Richard Brower, Marko Djurić, Ina Sarcević and Chung-I Tan: String-Gauge
Dual Description of DIS and Small-x, 10.1007/JHEP 11(2010)051, arXiv:1007.2259
R. Brower, M. Costa, M. Djuric, T. Raben, and C-I Tan: "Conformal Pomeron and Odderon Intercepts at Strong Coupling" (to appear.)
R. Brower, M. Djuric, T. Raben and C-I Tan, "DIS, Confinement and SoftWall", (to appear)

Outline

- Background and Motivation:
- Conformal Regge Theory:
- Pomeron Spectral Curve in Strong Coupling
- Saturation, Confinement, etc. and DIS:
- Soft Wall
- Pomeron and Odderon Intercepts in strong coupling:
- Summary and Outlook:

Background and Motivation

The AdS/CFT is a holographic duality that equates a string theory (gravity) in high dimension with a conformal field theory (gauge) in 4 dimensions. Specifically, compactified 10 dimensional super string theory is conjectured to correspond to $\mathcal{N}=4$ Super Yang Mills theory
 in 4 dimensions in the limit of large 't Hooft coupling:

$$
\lambda=g_{s} N=g_{y m}^{2} N_{c}=R^{4} / \alpha^{\prime 2} \gg 1
$$

$d s^{2}=\frac{R^{2}}{z^{2}}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5} \rightarrow e^{2 A(z)}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5}$

For $A d S, A=-\log (z / R)$. As The function $A(z)$ is changed for z large, the space is "deformed" away from pure $A d S$

$$
\text { "Soft-Wall": } A(z) \rightarrow-\log (z / R)+(\Lambda z)^{2}
$$

Issues: AdS/CFT for QCD ??

- Is strong coupling appropriate?
- In many regimes, DIS can be treated perturbatively, but at small enough x, (for fixed Q^{2}), the physics is inclusive and becomes generically non-perturbative.
- Is confinement important?
- Even for single Pomeron exchange, we will see confinement playing a role in determining the onset of saturation.
- Conformal Pomeron and OPE: Pomeron Spectral Curve and Graviton
- Conformal Pomeron and Odderon Intercepts in strong coupling:

Unification and Universality:

Gauge/String Duality $($ AdS $/ C F T) \longrightarrow$ 2-GLUONS \simeq GRAVITON

- "Pomeron" in QCD non-perturbatively,
- Unification of Soft and Hard Physics in High Energy Collision
- New phenomenology based on "Large Pomeron intercept", e.g., DIS at small-x: (DGLAP vs Pomeron), DVCS, Central Diffractive Higgs Production. etc.

WHAT IS THE BARE POMERON? LEADING I/NTERM CYLINDER EXCHANGE

WEAK:TWO GLUON <=> STRONG:ADS GRAVITON

$$
J_{c u t}=1+1-1=1
$$

$$
S=\frac{1}{2 \kappa^{2}} \int d^{4} x d z \sqrt{-g(z)}\left(-\mathcal{R}+\frac{12}{R^{2}}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi\right)
$$

F.E. Low. Phys. Rev. D 12 (I975), p. I63.
S. Nussinov. Phys. Rev. Lett. 34 (1975), p. I 286.

AdS Witten Diagram: Adv.
Theor. Math. Physics 2 (I998)253

Conformal Invariance and Pomeron Interaction from AdS/CFT
$+$
..........

- Draw all "Witten-Feynman" Diagrams in AdS5,
- High Energy Dominated by Spin-2 Exchanges:

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
$$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

ADS BUILDING BLOCKS BLOCKS

For 2-to-2

$$
A(s, t)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
$$

$$
\begin{aligned}
A(s, t)= & g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q}_{\perp} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right) \\
& d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \text { where } g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
\end{aligned}
$$

For 2-to-3
$A\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V * \widetilde{\mathcal{K}}_{P} * \Phi_{24}$

BASIC BUILDING BLOCK

- Elastic Vertex:

- Pomeron/Graviton Propagator:
$\mathcal{K}\left(s, b, z, z^{\prime}\right)=-\left(\frac{\left(z z^{\prime}\right)^{2}}{R^{4}}\right) \int \frac{d j}{2 \pi i}\left(\frac{1+e^{-i \pi j}}{\sin \pi j}\right) \widehat{s}^{j} G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp} ; j\right)$
conformal:

$$
G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp}\right)=\frac{1}{4 \pi z z^{\prime}} \frac{e^{(2-\Delta(j)) \xi}}{\sinh \xi},
$$

$$
\Delta(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}\right)}
$$

confinement:

$$
G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime} ; j\right) \longrightarrow \text { discrete sum }
$$

Holographic Approach to QCD

- Spin-2 leads to too fast a rise for cross sections
- Need to consider $\lambda \equiv g^{2} N_{c}$ finite
- Graviton (Pomeron) becomes j-Plane singularity at

$$
j_{0}: 2 \rightarrow 2-2 / \sqrt{\lambda}
$$

- Comfinement: Particles and Regge trajectories
- Brower, Polchinski, Strassler, and Tan: "The Pomeron and Gauge/String Duality," hep-th/063II5
$\mathcal{N}=4$ Strong vs Weak $g^{2} N_{c}$

II: Pomeron in the conformal Limit, OPE, and Anomalous Dimensions

$$
G_{m n}=g_{m n}^{0}+h_{m n}
$$

Massless modes of a closed string theory:
Need to keep higher string modes

As CFT, equivalence to OPE in strong coupling: using AdS

CFT correlate function - coordinate representation

$\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right)\right\rangle$

OPE:
 $\phi\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \simeq \sum_{k} C_{1,2 ; k}\left(x_{12}, \partial_{1}\right) \mathcal{O}_{k}\left(x_{1}\right)$
 Bootstrap: s-channel OPE $=\mathrm{t}$-channel OPE

 unitarity, positivity, locality, analyticity, etc.Dynamics:
$\mathcal{O}_{(\Delta, j)_{k}}(x)$
Conformal Dimension, Spin

Conformal Partial-Wave Expansion and Regge Limit:

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v)
$$

Conformal inv. cross-ratios

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

t-Channel partial-wave $\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j)}\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)$

$$
\text { Conformal Block } \quad \mathcal{G}_{(\Delta, j)}(u, v)
$$

Dynamics: $\quad\left\{\left(\Delta_{k}(j), j\right)\right\}, k=1,2, \cdots, j=0,1, \cdots \quad$ Conformal Data

$$
\mathcal{N}=4 \quad \text { SYM } \quad \text { Integrability } \quad \text { AdS-Dual, Large-N, etc. }
$$

Regge Limit: $\quad u \rightarrow 0, \quad v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed Euclidean vs Minkowski?

Conformal Partial-Wave Expansion and Regge Limit:

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v) \\
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right) c_{(3,4, \Delta k, j, j)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)}
\end{gathered}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal Block $\mathcal{G}_{(\Delta, j)}(u, v)$
Regge Limit: $\quad u \rightarrow 0, v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed

Euclidean Regge limit:

$$
\mathcal{G}_{(\Delta, j)}(u, v) \sim u^{\Delta / 2} g\left(\tilde{b}^{2}\right) \quad \tilde{b}^{2} \sim \frac{1-v}{\sqrt{u}} \sim \cos \theta
$$

Minkowski Regge limit:

$$
\begin{aligned}
\mathcal{G}_{(\Delta, j)}(u, v) & \sim u^{(1-j) / 2} \mathcal{Y}\left(\tilde{b}^{2}\right) \\
\sqrt{u} & \sim s^{-1}
\end{aligned} \mathcal{Y}\left(\tilde{b}^{2}\right) \sim \tilde{b}^{-2(\Delta-1)} \quad \tilde{b}^{2} \sim \frac{1-v}{\sqrt{u}} \quad \text { large }
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} \frac{d j}{2 \pi i} \quad a(\Delta, j) \mathcal{G}(u, v ; \Delta, j)
$$

Euclidean CFT

$$
S O(5,1)=S O(1,1) \times S O(4)
$$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \sum_{j} \quad a_{j}(\Delta) G_{\Delta, j}(u, v)
$$

Dynamics

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}
$$

Conformal Partial-Wave Expansion and Regge Limit:

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v) \\
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{(34, \Delta(k, j))} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)
\end{gathered}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal Block $\mathcal{G}_{(\Delta, j)}(u, v)$
Regge Limit: $\quad u \rightarrow 0, v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed

Minkowski Regge limit:

"Sommerfeld-Watson resummation" $\mathcal{A}(u, v)=\sum_{\xi= \pm} \int \frac{d \Delta}{2 \pi i} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} a_{\xi}(\Delta, j) \mathcal{G}_{(\Delta, j)}(u, v)$
Conformal Data:

$$
a_{ \pm} \sim \sum_{k} \frac{c_{k}(j)}{\Delta-\Delta_{k}^{ \pm}(j)}
$$

$$
\mathcal{A}(u, v)=\sum_{\xi} \sum_{k} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} c_{k}(j, \xi) \mathcal{G}_{\left(\Delta_{k}^{\xi}(j), j\right)}(u, v)
$$

Regge Limit:

$$
\mathcal{A} \sim u^{\left(1-j_{0}\right) / 2}
$$

j_{0} is the leading singularity of "anomalous dimensions", $\Delta(j)-j-\tau_{0}$.

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}
$$

Single Trace Gauge Invariant Operators of $\mathcal{N}=4$ SYM,

$$
\operatorname{Tr}\left[F^{2}\right], \quad \operatorname{Tr}\left[F_{\mu \rho} F_{\rho \nu}\right], \quad \operatorname{Tr}\left[F_{\mu \rho} D_{ \pm}^{S} F_{\rho \nu}\right], \quad \operatorname{Tr}\left[Z^{\tau}\right], \quad \operatorname{Tr}\left[D_{ \pm}^{S} Z^{\tau}\right], \cdots
$$

Super-gravity in the $\lambda \rightarrow \infty$:

$$
\operatorname{Tr}\left[F^{2}\right] \leftrightarrow \phi, \quad \operatorname{Tr}\left[F_{\mu \rho} F_{\rho \nu}\right] \leftrightarrow G_{\mu \nu}, \quad \cdots
$$

Symmetry of Spectral Curve:

$$
\Delta(j) \leftrightarrow 4-\Delta(j)
$$

Graviton Spectral Curve: $a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}$
Single Trace Gauge Invariant Operators of $\mathcal{N}=4$ SYM,

$$
\operatorname{Tr}\left[F_{ \pm \perp} D_{ \pm}^{j-2} F_{\perp \pm}\right], \quad j=2,4, \cdots
$$

Super-gravity in the $\lambda \rightarrow \infty$:

$$
\Delta(2)=4 ; \quad \Delta(j)=O\left(\lambda^{1 / 4}\right) \rightarrow \infty, \quad j>2
$$

Symmetry of Spectral Curve:

$$
\Delta(j) \leftrightarrow 4-\Delta(j)
$$

$\mathcal{N}=4$ SYM Leading Twist $\Delta(J)$ vs $J:$
Anomalous Dimensions

$\lambda=0$ DGLAP
(DIS moments)

$$
\operatorname{Tr}\left[F_{+\mu} D_{+}^{j-2} F_{+}^{\mu}\right]
$$

$$
\longleftarrow(0,2) \mathrm{T}_{\mu \nu} \quad \gamma=0
$$

$$
\lambda=0, \mathrm{BFKL}
$$

$$
\lambda=g^{2} N=0
$$

Graviton Spectral Curve: $\quad \frac{a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}}{}$

Flat Space String Theory

$$
\frac{1}{j-\left(2+\alpha^{\prime} t / 2\right)}
$$

Perturbing about SUGRA of large λ :

$$
\frac{1}{j-[2+(\sqrt{\lambda} / 2) \Delta(\Delta-4)]}
$$

Symmetry of Spectral Curve:

$$
\Delta(j) \leftrightarrow 4-\Delta(j)
$$

$$
(\Delta(j)-2)^{2}=(2 \sqrt{\lambda})\left(j-j_{0}\right), \quad j_{0}=2-2 / \sqrt{\lambda}
$$

ANOMALOUS DIMENSIONS:

$$
\gamma(j, \lambda)=\Delta(j, \lambda)-j-2
$$

$$
\begin{gathered}
\gamma_{2}=0 \\
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{gathered}
$$

Energy-Momentum Conservation built-in automatically.
III. Deep Inelastic Scattering (DIS) at small-x:

Confinement? Satuation?

DIS in AdS

We are interested in deep inelastic scattering (DIS) characterize by a virtual photon off a proton $\left(\gamma^{*} p\right)$

To characterize this process we consider the CM energy $s \approx Q^{2} / x$ for s large. In the regge limit, with Q^{2} fixed, we can treat this process via the exchange of pomerons. (leading order exchange in a sommerfeld-watson decomposition). The primary route to physical relevance is via the opital theorem

$$
\sigma_{\text {total }}=\frac{1}{s} \operatorname{Im}[\mathcal{A}(s, t=0)] \sim \frac{1}{s} \operatorname{Im}[\chi(s, t=0)]
$$

We can use this to calculate total cross sections and to determine the proton structure function

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{\text {trans }}+\sigma_{\text {long }}\right)
$$

Finally we must be wary of saturation where we must consider multipomeron exchange via eikonalization

$$
\chi \rightarrow 1-e^{i \chi}
$$

[Cornalba, Costa,
Penedones][Brower, Strassler, Tan]

ELASTICVS DIS ADS BUILDING BLOCKS

$$
\begin{aligned}
& A\left(s, x_{\perp}-x_{\perp}^{\prime}\right)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} \Phi_{12}(z) G\left(s, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) \Phi_{34}\left(z^{\prime}\right) \\
& \sigma_{T}(s)=\frac{1}{s} \operatorname{Im} A(s, 0)
\end{aligned}
$$

$$
\text { for } \quad F_{2}(x, Q)
$$

$$
\Phi_{13}(z) \rightarrow \Phi_{\gamma^{*} \gamma^{*}}(z, Q)=\frac{1}{z}[Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right]
$$

$d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad$ where $\quad g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}$

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

$$
\gamma_{2}=0
$$

$$
\begin{aligned}
& \Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
& \gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{aligned}
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

Effective Pomeron Intercept from HERA data:

$$
F_{2} \simeq C\left(Q^{2}\right) x^{-\epsilon_{e f f}}
$$

Questions on HERA DIS small-x data:

- Why $\alpha_{e f f}=1+\epsilon_{e f f}\left(Q^{2}\right)$?
- Confinement? (Perturbative vs. Non-perturbative?)
- Saturation? (evolution vs. non-linear evolution?)

Soft Wall Basics

In order to confine the theory one must effectively deform the AdS geometry. This can be done via:

- Sharp cutoff $-z=z_{0} \approx 1 / \Lambda_{Q C D}$ (Hard Wall Model) [Polchinski, Strassler],[Brower, Djuric, Sarcevic, Tan]
- Gradual increase in length scales / large effective potential boundary for large z leads to possible bound states: confinement
For our geometric softwall, the deformation function becomes $A(z) \rightarrow \Lambda^{2} z^{2}-\log (z / R)$. This leads to a metric

$$
d s^{2} \rightarrow \frac{e^{2 \Lambda^{2} z^{2}} R^{2}}{z^{2}}\left[d z^{2}+d x \cdot d x\right]
$$

We wish to use this soft wall model to describe deep inelastic scattering at leading order in the regge-limit. The object of interest is the AdS-pomeron, which was identified to be the Regge trajectory of the graviton [Brower, Polchinski, Strassler, Tan]. For us, it is sufficient to consider a purely geometric confinement deformation. However, to describe mesons it will be required to consider other dynamical fields in the bulk. [Karch, Katz, Son, Stephanov], [de Teramond, Brodsky], [Batell, Gherghettaz]

Unified Hard (conformal) and Soft (confining) Pomeron
At finite λ, due to Confinement in AdS, at $t>0$ aymptotical linear Regge trajectories

Propagators and Wave functions

In this framework the nomeron pronagator obevs:

$$
\left[-\partial_{z}^{2}+\Lambda^{4} z^{2}+\left(2 \Lambda^{2}-t\right)+\frac{\alpha^{2}(j)-1 / 4}{z^{2}}\right] \chi_{P}\left(j, z, z^{\prime}, t\right)=\delta\left(z-z^{\prime}\right)
$$

$$
\alpha(j)=\Delta(j)-2
$$

Where as for a continuous t spectrum the solution becomes a combination of Whittaker's functions (generalized hyper geometric functions)

$$
\begin{equation*}
\chi_{P} \sim \ldots M_{\kappa, \mu}\left(z_{<}\right) W_{\kappa, \mu}\left(z_{>}\right) \tag{2}
\end{equation*}
$$

for $\kappa=\kappa(t)$ and $\mu=\mu(j)$

$$
\kappa(t)=t / 4 \Lambda^{2}-1 / 2 \quad \mu(j)=\alpha(j) / 2
$$

Special Limits, Behavior, and Symmetry

- \wedge controls the strength of the soft wall and in the limit $\Lambda \rightarrow 0$ one recovers the conformal solution

$$
\operatorname{Im} \chi_{\rho}^{\text {conformal }}(t=0)=\frac{g_{0}^{2}}{16} \sqrt{\frac{\rho^{3}}{\pi}}\left(z z^{\prime}\right) \frac{e^{(1-\rho) \tau}}{\tau^{1 / 2}} \exp \left(\frac{-\left(\log z-\log z^{\prime}\right)^{2}}{\rho \tau}\right)
$$

where $\tau=\log \left(\rho z z^{\prime} s / 2\right)$ and $\rho=2-j_{0}$. Note: this has a similar behavior to the weak coupling BFKL solution where

$$
\operatorname{Im} \chi\left(p_{\perp}, p_{\perp}^{\prime}, s\right) \sim \frac{s^{j_{0}-1}}{\sqrt{\pi \mathcal{D} \log s}} \exp \left(-\left(\log p_{\perp}^{\prime}-\log p_{\perp}\right)^{2} / \mathcal{D} \log s\right)
$$

- If we look at the energy dependence of the pomeron propagator, we can see a softened behavior in the forward regge limit.

$$
\begin{aligned}
& \text { behavior in the forward regge limit. } \\
& \chi_{\text {conformal }} \sim \frac{s^{j_{0}-1}}{\sqrt{\log s}} \rightarrow \chi_{H W} \sim \frac{s^{j_{0}-1}}{(\log s)^{3 / 2}} \\
& \text { Ilv. this corresnonded to the softening of a i-plane sin }
\end{aligned}
$$

Analytically, this corresponded to the softening of a j-plane singularity from $1 / \sqrt{j-j_{0}} \rightarrow \sqrt{j-j_{0}}$. Again, we see this same softened behavior in the soft wall model.

- (Possibly) interesting limit $t=2 \Lambda^{2}$. Here the EOM simplifies and takes the form of a model with $1+1$ dimensional conformal symmetry[Fubini]

Data Set and Fit

We will consider the combined H 1 and Zeus data set published in 2010 [Aaron,et. al.][Chekanov, et. al.], but we restrict ourselves to small- x data, $x<0.01$. We can write a scattering amplitude as

$$
\mathcal{A}(s, t)=s \int_{\text {bulk }} d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right) \chi\left(s, t, z, z^{\prime}\right)
$$

Plots

The structure function $F_{2}\left(x, Q^{2}\right)$ plotted for farious values of Q^{2}. The data points are from the H1-Zeus collaboration and the solid lines are the soft wall fit values.

Plots Cont.

Contour plots of $\operatorname{Im}[\chi]$ as a function of $1 / \mathrm{x}$ vs Q^{2} (Gev) for conformal, hardwall, and softwall models. These plots are all in the forward limit, but the impact parameter representation can tell us about the onset of non-linear eikonal effects. The similar behavior for the softwall implies a similar conclusion about confinement vs saturation.

Comparison With Previous Work

Model	ρ	g_{0}^{2}	z_{0}	Q^{\prime}	$\chi_{\text {dof }}^{2}$
conformal	0.774^{*}	110.13^{*}	-	$0.5575^{*} \mathrm{GeV}$	$11.7\left(0.75^{*}\right)$
hard wall	0.7792	103.14	$4.96 \mathrm{GeV}^{-1}$	0.4333 GeV	$1.07\left(0.69^{*}\right)$
softwall	0.7774	108.3616	$8.1798 \mathrm{GeV}^{-1}$	0.4014 GeV	1.1035
softwall*	0.6741	154.6671	$8.3271 \mathrm{GeV}^{-1}$	0.4467 GeV	1.1245

Comparison of the best fit (including a χ sieve) values for the conformal, hard wall, and soft wall AdS models. The final row includes the soft wall with improved intercept. [Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]The statistical errors (omitted) are all $\sim 1 \%$ of fit parameters.

As expected, best fit values imply

$$
\rho \rightarrow \lambda>1 \quad 1 / z_{0} \sim \Lambda_{Q C D} \quad \text { and } \quad Q^{\prime} \sim m_{\text {proton }}
$$

$$
F_{2}\left(x, Q^{2}\right) \sim(1 / x)^{\epsilon_{e f f e c t}}
$$

HERA vs LHeC region: dots are HI-ZEUS small-x data points

IV: More on Pomeron and Odderon in the conformal Limit

Massless modes of a closed string theory: metric tensor,
$G_{m n}=g_{m n}^{0}+h_{m n}$
Kolb-Ramond anti-sym. tensor, $\quad b_{m n}=-b_{n m}$ dilaton, etc.
ϕ, χ, \cdots

ANOMALOUS DIMENSION:

$$
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \quad \gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n \quad \gamma_{2}=0
$$

Energy-Momentum Conservation built-in automatically.

Connection to Spin Chain in $\mathcal{N}=4 \mathrm{YM}$:

$$
\operatorname{tr} D^{S} Z^{\tau} \quad \widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

$$
\tau=2, \quad \widetilde{\Delta}(S)=\Delta(S+2)-2
$$

$\operatorname{tr} F_{\mu \nu} D_{\nu} \cdots D_{\nu^{\prime}} F_{\nu^{\prime} \mu^{\prime}}$
$S=0 \rightarrow \mathrm{BPS}$

$$
a_{1}(2, \lambda)=2 \sqrt{\lambda}-1+O(1 / \sqrt{\lambda})
$$

$$
a_{2}(2, \lambda)=3 / 2+O(1 / \sqrt{\lambda})
$$

B.Basso, 1109.3154v2

Gauge/String Duality: Conformal Limit

- $\mathrm{C}=+1$: Pomeron <===> Graviton

$$
j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda) .
$$

- C=-1: Odderon <===> Kalb-Ramond Field

$$
j_{0}^{(-)}=1-m_{A d S}^{2} / 2 \sqrt{\lambda}+O(1 / \lambda) .
$$

	Weak Coupling	Strong Coupling
$C=+1$	$j_{0}^{(+)}=1+(\ln 2) \lambda / \pi^{2}+O\left(\lambda^{2}\right)$	$j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda)$
$C=-1$	$j_{0,(1)}^{(-)} \simeq 1-0.24717 \lambda / \pi+O\left(\lambda^{2}\right)$	$j_{0,(1)}^{(-)}=1-8 / \sqrt{\lambda}+O(1 / \lambda)$
	$j_{0,(2)}^{(-)}=1+O\left(\lambda^{3}\right)$	$j_{0,(2)}^{(-)}=1+O(1 / \lambda)$

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.

Spectral Curves: J vs Δ

$$
\Delta^{(\pm)}(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}^{(+)}\right)}
$$

POMERON AND ODDERON IN STRONG COUPLING:

$$
\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

B.Basso, 1109.3154v2

$$
\text { POMERON } \quad \alpha_{p}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\frac{6 \zeta(3)+2}{\lambda^{2}}+\frac{18 \zeta(3)+\frac{31}{64}}{\lambda^{5 / 2}}+\frac{39 \zeta(3)+\frac{477}{32}}{\lambda^{3}}+\cdots
$$

ODDERON

 $\stackrel{\uparrow}{\text { Brower, Polchinski, Strłssler, Tan }}$Gromov et al. Kotikov, Lipatov, et al. Costa, Goncalves, Penedones (1209.4355) Kotikov, Lipatov (1301.0882)
Solution-a: $\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-\frac{4}{\lambda}+\frac{13}{\lambda^{3 / 2}}+\frac{96 \zeta(3)+41}{\lambda^{2}}+\frac{288 \zeta(3)+\frac{1823}{16}}{\lambda^{5 / 2}}+\frac{720 \zeta(5)+1344 \zeta(3)-\frac{3585}{4}}{\lambda^{3}}$
Solution-b:

$$
\alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-\frac{0}{\lambda}+\frac{0}{\lambda^{3 / 2}}+\frac{0}{\lambda^{2}}+\frac{0}{\lambda^{5 / 2}}+\frac{0}{\lambda^{3}}+\cdots
$$

Brower, Djuric, Tan \nearrow
Avsar, Hatta, Matsuo
Brower, Costa, Djuric, Raben, Tan (to appear shortly.)

$\mathcal{N}=4$ Strong vs Weak $g^{2} N_{c}$

Graviton

VIII. Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
-Phenomenological consequences, DIS at small-x, Diffractive Higgs production at LHC, etc.

