Pseudorapidity Distributions of Charged Particles, and Leading Track and Charged Mini-jet Cross-sections

QCD Results from the combined CMS-TOTEM run

A. Knutsson (Universiteit Antwerpen) on behalf of CMS and TOTEM Collaboration

Lowx 2014, Kyoto, 17 – 21 June 2014

Introduction Measurement of dN/dη Measurement of leading tracks and jets at low Pt Summary

CMS-FSQ-12-026, http://arxiv.org/abs/arXiv:1405.0722 (submitted to EPJC) CMS-PAS-FSQ-12-032, http://cds.cern.ch/record/1700112 (prelim.)

CMS and T2 Detectors

Data

- Common CMS+TOTEM data taking 2012. Run with low pile-up at \sqrt{s} = 8 TeV. (µ = 0.04, non standard high β^* = 90m optics configuration.)
- Minimum-Bias events triggered by TOTEM T2: at least one track with $p_{_{\rm f}}$ > 40 MeV in 5.3 < $|\eta|$ < 6.5

Samples defined off-line with primary tracks

- Inclusive sample:

at least one track with $p_1 > 40$ MeV in 5.3 < $|\eta| < 6.5$

- Non-single diffraction enhanced: at least one track with $p_{_t}$ > 40 MeV in 5.3 < η < 6.5 AND -6.5 < η < -5.3
- Single diffraction enhanced: at least one track with p, > 40 MeV in only 5.3 < η < 6.5 OR only in -6.5 < η < -5.3

Measurements in this talk

- dN/dη of charged particles in |η|<2.2 and 5.3 < |η| < 6.4 Common off-line analysis.
- Integrated normalized cross-sections for leading charged particles and leading charged particle jets at very low pt. ($|\eta|$ <2.4)

dN/dŋ of charged particles

Pseudorapidity distributions of charged particles:

- Essential for understanding hadron production and contributions from soft and hard scattering
- Bulk of particles from semi-hard (multi)parton interactions \rightarrow phenomenolocial models and tuning of MC
- Measurement in common data taking with CSM+TOTEM at $\sqrt{s}=8$ TeV: tracks with p,>0.1 GeV in |η|<2.2 and p,>0.04 GeV in 5.3<|η|< 6.4
- dN/dn in very forward region, earlier explored by TOTEM and LHCb at 7 TeV
- Complements previous dN/dn measurements in central region made at different \sqrt{s} :

Low-x, Kyoto, 17 - 21 June, 2014

dN/dŋ results

Measurement corrected to stable particle level:

Charged particles with $p_1 > 0$ in $|\eta| < 2.2$ and $5.3 < |\eta| < 6.4$

Trigger selection mimicked at stable particle level:

- Inclusive:

At least one charged particle with $p_1 > 0$ in 5.3 < $|\eta| < 6.5$

- NSD-enhanced:

At least one charged particle with p,> 0 in 5.3 < η < 6.5 AND -6.5 < η < -5.3

- SD-enhanced:

At least one charged particle with $p_1 > 0$ only in $5.3 < \eta < 6.5$ OR only in $-6.5 < \eta < -5.3$

dN/dŋ results

- Large model sensitivity
- MC description of data varies between different event samples
- Cosmic Ray MC QGSJET describes inclusive and NSD-enhanced over full eta range Otherwise no model describes the shape of the eta spectrum.
- SD-enhanced: Large spread between predictions. Pythia6 Z2* describes the data.

Center of mass energy dependence of $dN_{ch}/d\eta|_{\eta=0}$

- NSD events at \sqrt{s} = 53-8000 GeV
- New result (red bullet) follows power law (~ s^{ϵ} , ϵ = 0.23)

Leading tracks and jets

Analyses motivated by:

Jet production and the inelastic *pp* cross section at the LHC

A. Grebenyuk^a, F. Hautmann^b, H. Jung^{a,c}, P. Katsas^a and A. Knutsson^a

Abstract

We suggest that, if current measurements of inclusive jet production for central rapidities at the LHC are extended to lower transverse momenta, one could define a visible cross section sensitive to the unitarity bound set by the recent determination of the inelastic proton-proton cross section.

arXiv:1209.6265v1 [hep-ph] 27 Sept 2012 Phys.Rev. D86 (2012) 117501

- Total cross-section for $2 \rightarrow 2$ process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2 \, dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- At LHC this happens around ~5 GeV at LHC.

- Total cross-section for 2 \rightarrow 2 process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2 \, dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2–32 cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the $2\rightarrow 2$ cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma \rightarrow \sigma \times \frac{\alpha_s(p_t + p_{t0})}{\alpha_s(p_t)} \frac{p_t^4}{\left(p_t^2 + p_{t0}^2\right)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Tota}$$

0

- Total cross-section for 2 \rightarrow 2 process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2 \, dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the $2\rightarrow 2$ cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma \rightarrow \sigma \times \frac{\alpha_s(p_t + p_{t0})}{\alpha_s(p_t)} \frac{p_t^4}{\left(p_t^2 + p_{t0}^2\right)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Tota}$$

Can be studied in a range accessible by the experiments.

• Measurement possible to do with tracks and track jets.

- Different shapes of the cross-sections. The jet events are shifted towards higher values. More than just the leading particle clustered in the jet. UE important for the jets.
- When radius parameter in the jet algorithm is decreased the shape of the jet cross-section approaches the leading track cross-section.

[GeV]

R=0.5 / R=0.1

10

P_{T min,} leading jet

0.5

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- Inclusive MB events triggered by TOTEM T2: At least one track with $p_1 > 40$ MeV in 5.3 < $|\eta| < 6.5$
- Track selection: |η| < 2.4, p, > 0.4 GeV

→ Measurement of the **normalized integrated** *leading track* cross-section.

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- Inclusive MB events triggered by TOTEM T2: At least one track with $p_{_{\rm f}}$ > 40 MeV in 5.3 < $|\eta|$ < 6.5
- Track selection: |η| < 2.4, p > 0.4 GeV

 \rightarrow Measurement of the **normalized integrated** *leading track* cross-section.

• Track-jets:

```
Anti-k_{t} algorithm. R = 0.5.
```

Input: Tracks with $|\eta| < 2.4$ and $p_1 > 0.4$ GeV.

Jet selection: The leading jet in $|\eta| < 1.9$ with $p_1 > 1$ GeV.

 \rightarrow Measurement of the **normalized integrated** *leading track-jet* cross-section.

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- Inclusive MB events triggered by TOTEM T2: At least one track with $p_1 > 40$ MeV in 5.3 < $|\eta| < 6.5$
- Track selection: |η| < 2.4, p > 0.4 GeV

 \rightarrow Measurement of the **normalized integrated** *leading track* cross-section.

 Track-jets: Anti-k_t algorithm. R = 0.5. Input: Tracks with |η| < 2.4 and p_t > 0.4 GeV. Jet selection: The leading jet in |η| < 1.9 with p_t > 1 GeV.

 \rightarrow Measurement of the **normalized integrated** *leading track-jet* cross-section.

• Measurement corrected to stable particle level defined by cuts corresponding to above.

 Normalized integrated charged-particle or charged particle jet event cross-section as a function of p_{T,min} for events with a leading charged particle (jet) with p_T > p_{T,min}.

$$D(p_{\text{T,min}}) = \frac{1}{N_{\text{events}}} \sum_{p_{\text{T,leading}} > p_{\text{T,min}}} \Delta p_{\text{T, leading}} \left(\frac{dN_{\text{ch}}}{dp_{\text{T,leading}}}\right)$$

• Measurement to normalized to events (N_{events}) with a leading charged particle with $|\eta|$ <2.4 and p_T > 0.4 GeV

Results – leading jets and tracks

Normalized Leading Charged Particle Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_T > p_{T,min}$ as a function $p_{T,min}$.

- Normalized event cross-sections.
 - \rightarrow No sensitivity to particle multiplicities in events.
 - → Distribution converges to one by construction. Looking for effects at low p_{τ} - MC scaled to data at $p_{\tau_{min}}$ = 9 GeV.
- Large difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data.
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

Normalized Leading Charged Particle Jet Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_T > p_{T,min}$ as a function $p_{T,min}$.

- Normalized event cross-sections.
 - \rightarrow No sensitivity to jet multiplicities in events.
 - \rightarrow Distribution converges to one by construction.

Looking for effects at low p_{τ} - MC scaled to data at $p_{\tau,min}$ = 14 GeV.

- Larger difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data.
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

Leading charged particles

Leading charged particle jets

- Different shapes for leading jets and leading charged particles.
- More activity than just the leading track clustered in the jet. Thus, UE important for the jets.
 - \rightarrow The p_t is shifted towards higher value in jets compared to leading charged particles.
 - → Larger spread between different MC predictions in the jet measurement.
 - \rightarrow Larger deviation between MC and data for the jets compared to the charged particles.
 - \rightarrow MC somewhat better description of the charge particle measurement.

Charged particle eta distributions:

- dN/d η for inclusive, NSD- and SD-enhanced events, over large η range.
- Measurement input to test and tuning of MC models.
- No model describes full η spectrum in all samples. Cosmic ray MC QGSJET describes inclusive and NSD sample. Pythia6 Z2* describes SD.

Normalized integrated event cross-sections for leading charged particles and jets:

- The integrated distributions probe the transition from the pertubative to the non-pertubative regions, and are sensitive to the "taming of the cross-section".
- Difference between the charge particle and the charge particle jet measurement. Jets larger sensitivity to MPI and UE.
- The measurements are in general not well describe by the models. Only EPOS provides a decent description of the data.

- Tame the divergence by using saturated PDFs.
- CASCADE. KT-factorization based MC generator.
 - Low-pT behavior from:
 - ME dependence (low-p_{τ} rise from k_{τ} << p_{τ}, slower rise for k_{τ})

6

Phys.Rev. D84 (2011) 054001

Cross-section of jets with $p_{T} > 4 \text{ GeV}$ $|\eta| < 1.9$

MC area normalised to data. --> Data well described at low pt. MC fails at high pt.