Rapidity gaps and ξ in SD processes in ATLAS/CMS

MAREK TAŠEVSKÝ

INSTITUTE OF PHYSICS, ACADEMY OF SCIENCES, PRAGUE

Definitions of diffractive variables

Fractional momentum loss of scattered proton

$$\xi_{\text{proton}} = (p_{\text{Z}}^{\text{In}} - p_{\text{Z}}^{\text{Out}}) / p_{\text{Z}}^{\text{In}}$$

Detector-level approximation:

summing over detector objects ...
$$\xi^{\pm} = \sum p_{T} e^{\pm y} / \sqrt{s}$$
 or $\xi^{\pm} = \sum (E \pm p_{Z}) / \sqrt{s}$ ξ^{+} ... diffractive system going in the $-z$ direction

 ξ ... diffractive system going in the +z direction

• Forward rapidity gaps $\Delta \eta^{\mathrm{F}}$

Region in η devoid of hadronic activity

$$\Delta \eta \sim -\ln \xi_{\rm X} \dots {\rm smaller} \, \xi_{\rm X} \, (M_{\rm X}) => {\rm bigger} \, {\rm gap}$$

The ATLAS/CMS acceptance and sensitivity

3

ATLAS/CMS acceptance & sensitivity:

 $|\eta|$ < 4.7-4.9 particles with $p^{\text{charged (neutral)}}$ > X (Y) MeV (lower-p particles don't reach calorimeters due to mag. field etc.)

Rapidity gaps:

Particle-level: region without particles ($p^{\text{ch(n)}} > X$ (Y) MeV) within $|\eta| < 4.7-4.9$ Reco-level gap: suppression cuts against the electronic noise in calorimeters

- ξ approximation:
 - summing over all clusters as the electronic noise is Gaussian-symmetric around o
- -> noise cancellation
- Key requirement: single interaction per bunch crossing

Soft diffraction by ATLAS

- Small gaps -> hadronization fluctuations of ND events
- Large gaps -> diffractive plateau (SD+DD dominant)
- Model uncertainties -> Herwig++ fails to describe the gap spectrum
 - \circ $\Delta \eta^{\rm F}$ allows to test hadronization models (cluster-based approach of Herwig++)

Eur.Phys.J. C72 (2012) 1926

ATLAS vs. CMS: soft diffraction

ATLAS definition

- Hadron-level: $p_T > 200 \text{ MeV}$, $|\eta| < 4.9$
- O Detector-level: $p_{\rm T}$ > 200 MeV, $|\eta|$ < 4.9 $E_{\rm cell}/\sigma_{\rm noise}$ > $S_{\rm th}(\eta)$

CMS definition

- Hadron-level: $p_T > 200 \text{ MeV}$, $|\eta| < 4.7$
- O Detector-level: E > 0 4 GeV (depending on det. region and object type), $|\eta| < 4.7$

ATLAS vs. CMS

- systematic shift of the cross-section
- o difference η -acceptance
- o CMS extends the ATLAS measurement by 0.4 units of $\Delta\eta^{\rm F}$

Hard diffraction by the CMS experiment

- CMS published the diffractive contribution to dijet production at the LHC
 - \circ Jets $p_{\rm T} > 20 \text{ GeV}$
 - O Detector objects: $p_T > 200$ MeV for $|\eta| < 2.4$, E > 4 GeV for $|\eta| > 3$
 - Enhancing diff. contribution by $\Delta \eta^{\rm F} > 1.9$ requirement
- Measurement of ξ^{\pm}
 - o comparison to different MC models
 - × ND (red): Pythia 6 & 8
 - SD (blue): Pythia 8, Pompyt, Pomwig
 - × DD: Pythia 8
 - Powheg for NLO comparisons
- Results
 - data also consists of proton dissociative events (scattered proton excited into low mass state escaping undetected into the forward region)
 - Gap Survival Probability

$$S^2 = 0.12 \pm 0.05$$
 (LO)

