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In this Letter, the first numerical analysis up to next-to-leading order (NLO) on the forward
hadron productions in pA collisions in the small-x saturation formalism is performed in the large
Nc limit. Using the NLO parton distributions and NLO fragmentation functions together with
reasonable parameters for dipole amplitudes, we can receive a good description of the available RHIC
data in dAu collisions and further make predictions for pPb scatterings at the LHC. This analysis
not only incorporates the important NLO corrections for all partonic channels, but also reduces the
renormalisation scale dependences and therefore help to lower the theoretical uncertainties. The
development of this NLO analysis can provide us the test of saturation physics beyond leading
logarithmic approximation and shall play an important role in the search for signals of the gluon
saturation phenomena at the LHC.

PACS numbers:

Introduction Prior to the quantum chromodynamics
(QCD) era, the strong interactions physics was studied
using the analytic properties of the scattering matrix.
Hadron scattering was described in terms of Reggeon
and Pomeron exchanges, with the latter being domi-
nant at high energies. Shortly after the discovery of the
QCD as the microscopic theory which is responsible for
the strong interaction, the BFKL Pomeron [1], was de-
rived from perturbative calculations in QCD. It predicted
strong rise of the gluon density with decreasing longitu-
dinal momentum fraction x which in turn leads to the
strong growth of the cross section with increasing energy.
On a microscopic level it was understood that this strong
growth is due to the fact that the Bremsstrahlung radi-
ation favors small-x gluons. BFKL equation performs
resummation of the large logarithms (αs ln 1/x)n which
appear when considering gluon radiation at high ener-
gies. Furthermore, it is expected that, when too many
gluons are squeezed in a confined hadron, they start to
overlap and recombine, and thus reach a balance between
radiation and recombination. This is known as the gluon
saturation phenomenon. To include the effect of satu-
ration, a non-linear term in the evolution equation was
introduced [2, 3]. A complete derivation of the nonlin-
ear evolution equation, the BK-JIMWLK equation, was
performed in [4–6]. A characteristic feature of the solu-
tion to the nonlinear evolution equation is the emergence
of the dynamical scale, the saturation momentum Qs(x)
which separates the dense saturated parton regime from
the dilute regime.

The quest for the signal of the gluon saturation has
been especially important in the context of the nucleon-
nucleus experiments at RHIC and the LHC [7], and con-
stitutes a vital part of the scientific program for the
planned electron-ion colliders [8]. Among many exper-

imental observables which can reveal the parton satu-
ration phenomenon, the forward single inclusive hadron
productions in proton-nucleus (pA) collisions is unique
in terms of its simplicity and accuracy.

Forward single inclusive hadron production in pA col-
lisions p + A → h(y, p⊥) + X can be viewed as follows:
a collinear parton from the proton projectile scatters off
the dense nuclear target A and subsequently fragments
into a measured forward hadron at rapidity y with trans-
verse momentum p⊥. Measuring the produced hadron
at forward rapidity y is particularly interesting since the
proton projectile with relatively large x is always dilute
while the nuclear target with small xg is dense in this
kinematic region. When p⊥ ∼ Qs(xg) # ΛQCD, one
should expect that gluon saturation plays an important
role, while the traditional collinear factorization, which
does not include multiple scatterings and small-x evo-
lutions, breaks down. This observable is also relatively
simple in the large Nc limit since it only then depends
on the dipole amplitude which has been studied most ex-
tensively. Previous phenomenological studies [7, 9–13] on
this topic either used the leading-order effective factor-
ization [9] or the kt factorization together with the run-
ning coupling corrections to the LL BK equation, while
the complete NLL (in αs ln 1/x) corrections were not yet
available, therefore never fully taken into account.

In the past few years, there has been considerable
progress in the development of the effective small-x fac-
torization [15, 16] for the high energy scattering in dilute-
dense systems. In particular, the single inclusive hadron
productions in pA collisions has been computed up to the
one-loop order for all possible partonic channels, which
not only demonstrates the effective factorization by sys-
tematically eliminating all the divergences, but also al-
lows us to calculate the cross section up to next-to-
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FIG. 2. Typical Feynman diagrams for the leading order quark production qA → q +X.

inside the nucleus target can be cast into the Wilson line

U(x⊥) = P exp

{
igS

∫ +∞

−∞
dx+ T cA−

c (x
+, x⊥)

}
, (3)

with A−
c (x

+, x⊥) being the gluon field solution of the classical Yang-Mills equation inside the large nucleus target.
Therefore, the leading-order cross section for producing a quark with finite transverse momentum k⊥ at rapidity y

in the channel qA → qX can be written as:

dσpA→qX
LO

d2k⊥dy
=
∑

f

xqf (x)

∫
d2x⊥d2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥) 1

Nc

〈
TrU(x⊥)U

†(y⊥)
〉
Y
, (4)

with x = k⊥√
s
ey and xg = k⊥√

s
e−y. The notation 〈. . . 〉Y indicates the CGC average of the color charges over the nuclear

wave function where Y $ ln 1/xg and xg is the smallest longitudinal momentum fraction of the probed gluons, and
is determined by the kinematics 1. Normally, we first compute the correlator

〈
TrU(x⊥)U †(y⊥)

〉
in the McLerran-

Venugopalan model[19] as the initial condition, and then we perform the energy evolution for the correlator which
introduces the rapidity (Y ) dependence. The energy evolution equation at small-x for dense nucleus targets is the BK
equation as we shall demonstrate later when we remove the rapidity divergence. When multiplied by the fragmentation
function, the above result will lead to the differential cross section for hadron production in pA collisions.
It is straightforward to include the gluon initiated channel, and the full leading order hadron production cross

section can be written as

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz

z2




∑

f

xpqf (xp)F(k⊥)Dh/q(z) + xpg(xp)F̃(k⊥)Dh/g(z)



 , (5)

with p⊥ = zk⊥, xp = p⊥

z
√
s
eyh , τ = zxp and xg = p⊥

z
√
s
e−yh . Here we have defined

F(k⊥) =

∫
d2x⊥d2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)S(2)
Y (x⊥, y⊥), (6)

with S(2)
Y (x⊥, y⊥) =

1
Nc

〈
TrU(x⊥)U †(y⊥)

〉
Y
. F̃(k⊥) is defined similarly but in the adjoint representation

F̃(k⊥) =

∫
d2x⊥d2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)S̃(2)
Y (x⊥, y⊥), (7)

where S̃(2)
Y (x⊥, y⊥) = 1

N2
c−1

〈
TrW (x⊥)W †(y⊥)

〉
Y
andW (x) is a Wilson line in the adjoint representation. It represents

the multiple interaction between the final state gluon and the nucleus target. In general, the adjoint Wilson lines can
be replaced by two fundamental Wilson lines by using the identity

W ab(x⊥) = 2Tr
[
T aU(x⊥)T

bU †(x⊥)
]
, (8)

1 Here we are only interested in the inelastic production of the quark in the forward scattering which produces quark with finite
transverse momentum. There is also elastic scattering contribution to the cross section which generates vanishing k⊥, such as∑

f xqf (x)δ
(2)(k⊥)

∫
d2b to the total cross section.

Diagram for leading order quark production with 
multiple rescattering.
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FIG. 2. Typical Feynman diagrams for the leading order quark production qA → q +X.
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introduces the rapidity (Y ) dependence. The energy evolution equation at small-x for dense nucleus targets is the BK
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FIG. 2. Typical Feynman diagrams for the leading order quark production qA → q +X.
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Could be evaluated with GBW model

4

and the color matrices can be removed using the Fierz identity T a
ijT

a
kl =

1
2δilδjk − 1

2Nc
δijδkl. It is straightforward to

show that

S̃(2)
Y (x⊥, y⊥) =

1

N2
c − 1

[〈
TrU(x⊥)U

†(y⊥)TrU(y⊥)U
†(x⊥)

〉
Y
− 1

]
, (9)

which, in the large Nc limit, allows us to write

F̃(k⊥) =

∫
d2x⊥d2y⊥

(2π)2
e−ik⊥·(x⊥−y⊥)S(2)

Y (x⊥, y⊥)S
(2)
Y (y⊥, x⊥) . (10)

It is very important to keep in mind that the normalization of the dipole amplitudes S(2)(x⊥, y⊥) is unity when
x⊥ = y⊥. In addition, since normally

〈
TrU(x⊥)U †(y⊥)

〉
Y

is real, it is easy to see that S(2)(x⊥, y⊥) = S(2)(y⊥, x⊥).

If we further neglect the impact parameter dependence, one will find that S(2)(x⊥, y⊥) = exp
[
−Q2

s(x⊥−y⊥)2

4

]
in the

McLerran-Venugopalan model, where Qs is the saturation momentum which characterizes the density of the target
nucleus. The analytical form of the dipole amplitude can help us to test the properties of dipole amplitudes mentioned
above.
We would like to emphasize that in Eq. (5) we do not include the transverse momentum dependence in the incoming

parton distribution from the nucleon. In the forward pA collisions, the transverse momentum dependence from the
incoming parton distribution of the nucleon is not as important as that from the nucleus target. Therefore, in the
current calculations, we neglect this effect. As a consistent check, the one-loop calculations in the following support
this assumption. In particular, the collinear divergence associated with the incoming parton distribution contains no
transverse momentum dependence.

III. THE NEXT-TO-LEADING ORDER CROSS SECTION

In this section, we will present the detailed calculations for the NLO corrections to the leading order result in
Eq. (5). There are four partonic channels: q → qg, g → gg, q → gq, g → qq̄. We will carry out the calculations for
these channels separately.

A. The quark channel q → q

The quark production contribution contains the real and virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q → qg first. The real diagrams with a quark (with transverse coordinate b⊥) and gluon (with
transverse coordinate x⊥) in the final state, as shown in Fig. 3, have been studied in Ref. [30–32]. We take eq.(78)
of Ref. [32] as our starting point which gives2

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x⊥

(2π)2
d2x′

⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′

⊥
)e−ik2⊥·(b⊥−b′

⊥
)
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λαβ

ψλ∗
αβ(u

′
⊥)ψ

λ
αβ(u⊥)
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[
S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)

]
. (11)

where u⊥ = x⊥ − b⊥, u′
⊥ = x′

⊥ − b′⊥, v⊥ = (1 − ξ)x⊥ + ξb⊥, v′⊥ = (1 − ξ)x′
⊥ + ξb′⊥ and

S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) =

1

CFNc

〈
Tr

(
U(b⊥)U

†(b′⊥)T
dT c

) [
W (x⊥)W

†(x′
⊥)

]cd〉

Y
, (12)

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1

CFNc

〈
Tr

(
U(b⊥)T

dU †(v′⊥)T
c
)
W cd(x⊥)

〉
Y
. (13)

2 For convention reasons, we have interchanged the definition of z and 1− z and replaced the variable z by ξ.

Y = ln 1/xg
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4

and the color matrices can be removed using the Fierz identity T a
ijT

a
kl =

1
2δilδjk − 1

2Nc
δijδkl. It is straightforward to

show that

S̃(2)
Y (x⊥, y⊥) =

1

N2
c − 1

[〈
TrU(x⊥)U

†(y⊥)TrU(y⊥)U
†(x⊥)

〉
Y
− 1
]
, (9)

which, in the large Nc limit, allows us to write

F̃(k⊥) =

∫
d2x⊥d2y⊥

(2π)2
e−ik⊥·(x⊥−y⊥)S(2)

Y (x⊥, y⊥)S
(2)
Y (y⊥, x⊥) . (10)

It is very important to keep in mind that the normalization of the dipole amplitudes S(2)(x⊥, y⊥) is unity when
x⊥ = y⊥. In addition, since normally

〈
TrU(x⊥)U †(y⊥)

〉
Y

is real, it is easy to see that S(2)(x⊥, y⊥) = S(2)(y⊥, x⊥).

If we further neglect the impact parameter dependence, one will find that S(2)(x⊥, y⊥) = exp
[
−Q2

s(x⊥−y⊥)2

4

]
in the

McLerran-Venugopalan model, where Qs is the saturation momentum which characterizes the density of the target
nucleus. The analytical form of the dipole amplitude can help us to test the properties of dipole amplitudes mentioned
above.
We would like to emphasize that in Eq. (5) we do not include the transverse momentum dependence in the incoming

parton distribution from the nucleon. In the forward pA collisions, the transverse momentum dependence from the
incoming parton distribution of the nucleon is not as important as that from the nucleus target. Therefore, in the
current calculations, we neglect this effect. As a consistent check, the one-loop calculations in the following support
this assumption. In particular, the collinear divergence associated with the incoming parton distribution contains no
transverse momentum dependence.

III. THE NEXT-TO-LEADING ORDER CROSS SECTION

In this section, we will present the detailed calculations for the NLO corrections to the leading order result in
Eq. (5). There are four partonic channels: q → qg, g → gg, q → gq, g → qq̄. We will carry out the calculations for
these channels separately.

A. The quark channel q → q

The quark production contribution contains the real and virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q → qg first. The real diagrams with a quark (with transverse coordinate b⊥) and gluon (with
transverse coordinate x⊥) in the final state, as shown in Fig. 3, have been studied in Ref. [30–32]. We take eq.(78)
of Ref. [32] as our starting point which gives2

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x⊥

(2π)2
d2x′

⊥
(2π)2
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(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′

⊥
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⊥
)
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αβ(u

′
⊥)ψ

λ
αβ(u⊥)
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[
S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)
]
. (11)

where u⊥ = x⊥ − b⊥, u′
⊥ = x′

⊥ − b′⊥, v⊥ = (1 − ξ)x⊥ + ξb⊥, v′⊥ = (1 − ξ)x′
⊥ + ξb′⊥ and

S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)U

†(b′⊥)T
dT c

) [
W (x⊥)W

†(x′
⊥)
]cd〉

Y
, (12)

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)T

dU †(v′⊥)T
c
)
W cd(x⊥)

〉
Y
. (13)

2 For convention reasons, we have interchanged the definition of z and 1− z and replaced the variable z by ξ.
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FIG. 2. Typical Feynman diagrams for the leading order quark production qA → q +X.
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Wilson lines in fundamental representation

At LO no scale or rapidity dependence in the derivation. Usually included for phenomenology.
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and the color matrices can be removed using the Fierz identity T a
ijT

a
kl =

1
2δilδjk − 1

2Nc
δijδkl. It is straightforward to

show that

S̃(2)
Y (x⊥, y⊥) =

1

N2
c − 1

[〈
TrU(x⊥)U

†(y⊥)TrU(y⊥)U
†(x⊥)

〉
Y
− 1
]
, (9)

which, in the large Nc limit, allows us to write

F̃(k⊥) =

∫
d2x⊥d2y⊥

(2π)2
e−ik⊥·(x⊥−y⊥)S(2)

Y (x⊥, y⊥)S
(2)
Y (y⊥, x⊥) . (10)

It is very important to keep in mind that the normalization of the dipole amplitudes S(2)(x⊥, y⊥) is unity when
x⊥ = y⊥. In addition, since normally

〈
TrU(x⊥)U †(y⊥)

〉
Y

is real, it is easy to see that S(2)(x⊥, y⊥) = S(2)(y⊥, x⊥).

If we further neglect the impact parameter dependence, one will find that S(2)(x⊥, y⊥) = exp
[
−Q2

s(x⊥−y⊥)2

4

]
in the

McLerran-Venugopalan model, where Qs is the saturation momentum which characterizes the density of the target
nucleus. The analytical form of the dipole amplitude can help us to test the properties of dipole amplitudes mentioned
above.
We would like to emphasize that in Eq. (5) we do not include the transverse momentum dependence in the incoming

parton distribution from the nucleon. In the forward pA collisions, the transverse momentum dependence from the
incoming parton distribution of the nucleon is not as important as that from the nucleus target. Therefore, in the
current calculations, we neglect this effect. As a consistent check, the one-loop calculations in the following support
this assumption. In particular, the collinear divergence associated with the incoming parton distribution contains no
transverse momentum dependence.

III. THE NEXT-TO-LEADING ORDER CROSS SECTION

In this section, we will present the detailed calculations for the NLO corrections to the leading order result in
Eq. (5). There are four partonic channels: q → qg, g → gg, q → gq, g → qq̄. We will carry out the calculations for
these channels separately.

A. The quark channel q → q

The quark production contribution contains the real and virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q → qg first. The real diagrams with a quark (with transverse coordinate b⊥) and gluon (with
transverse coordinate x⊥) in the final state, as shown in Fig. 3, have been studied in Ref. [30–32]. We take eq.(78)
of Ref. [32] as our starting point which gives2

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x⊥

(2π)2
d2x′

⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′

⊥
)e−ik2⊥·(b⊥−b′

⊥
)
∑

λαβ

ψλ∗
αβ(u

′
⊥)ψ

λ
αβ(u⊥)

×
[
S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)
]
. (11)

where u⊥ = x⊥ − b⊥, u′
⊥ = x′

⊥ − b′⊥, v⊥ = (1 − ξ)x⊥ + ξb⊥, v′⊥ = (1 − ξ)x′
⊥ + ξb′⊥ and

S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)U

†(b′⊥)T
dT c

) [
W (x⊥)W

†(x′
⊥)
]cd〉

Y
, (12)

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)T

dU †(v′⊥)T
c
)
W cd(x⊥)

〉
Y
. (13)

2 For convention reasons, we have interchanged the definition of z and 1− z and replaced the variable z by ξ.

Using this one can obtain:
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FIG. 9: Same as Fig. 8 but including the inelastic term in the hybrid formalism. Solid lines are the same as in Fig. 8.
Dotted and dashed lines correspond to αs = 0.1 and αs = αs(Q = pt) in Eq. (20), respectively.

mentation9 [47].
Before discussing the results let us first explain the meaning of the rcBK-MC bands shown in Figs. 11-13:

They comprise the results for RpPb calculated according to Eq. (21) using the three UGD sets (g1119, g1101 and
MV), the three kind of fragmentation functions (KKP-LO, DSS-LO and DSS-NLO) and the two possibilities to
determine the initial saturation scale (natural, Eq. (9), or modified, Eq. (10)) considered throughout this work,
always using the same configuration in the numerator –p+Pb-spectrum– and denominator –p+p-spectrum–. The
upper limit of the bands correspond in all cases to RpPb calculated with UGD set g1.119 together with the
natural prescription for the initial saturation scale. The black solid line in the plots for η = 0 and 2 in Fig. 11
represents the upper limit of the band if only modified initial conditions are used (such distinction is not necessary
for Figs. 12 and 13 since both cases are treated separately). For the results obtained within the kt-factorization
formalism the upper limit correspond to KKP-LO fragmentation functions, while for the results obtained within
the hybrid formalism (both for only elastic and elastic +inelastic curves) the upper limit of the bands corresponds
to DSS-NLO fragmentation functions. In turn, the lower limits of the bands correspond in all cases to UGD set
MV and DSS-NLO fragmentation functions. The results for all other possible configurations – i.e. other UGDs
and fragmentation functions and choice of natural or modified initial conditions– fall within the plotted bands;
individual curves are not shown for clarity of the presentation.

9 To mention two differences to our work: ref. [47] uses a different fragmentation function and does not treat fluctuations of the
nucleon configurations in the target. The predictions are not far apart but the difference illustrates the sensitivity of RpA to such
“details”.
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FIG. 9: Same as Fig. 8 but including the inelastic term in the hybrid formalism. Solid lines are the same as in Fig. 8.
Dotted and dashed lines correspond to αs = 0.1 and αs = αs(Q = pt) in Eq. (20), respectively.

mentation9 [47].
Before discussing the results let us first explain the meaning of the rcBK-MC bands shown in Figs. 11-13:

They comprise the results for RpPb calculated according to Eq. (21) using the three UGD sets (g1119, g1101 and
MV), the three kind of fragmentation functions (KKP-LO, DSS-LO and DSS-NLO) and the two possibilities to
determine the initial saturation scale (natural, Eq. (9), or modified, Eq. (10)) considered throughout this work,
always using the same configuration in the numerator –p+Pb-spectrum– and denominator –p+p-spectrum–. The
upper limit of the bands correspond in all cases to RpPb calculated with UGD set g1.119 together with the
natural prescription for the initial saturation scale. The black solid line in the plots for η = 0 and 2 in Fig. 11
represents the upper limit of the band if only modified initial conditions are used (such distinction is not necessary
for Figs. 12 and 13 since both cases are treated separately). For the results obtained within the kt-factorization
formalism the upper limit correspond to KKP-LO fragmentation functions, while for the results obtained within
the hybrid formalism (both for only elastic and elastic +inelastic curves) the upper limit of the bands corresponds
to DSS-NLO fragmentation functions. In turn, the lower limits of the bands correspond in all cases to UGD set
MV and DSS-NLO fragmentation functions. The results for all other possible configurations – i.e. other UGDs
and fragmentation functions and choice of natural or modified initial conditions– fall within the plotted bands;
individual curves are not shown for clarity of the presentation.

9 To mention two differences to our work: ref. [47] uses a different fragmentation function and does not treat fluctuations of the
nucleon configurations in the target. The predictions are not far apart but the difference illustrates the sensitivity of RpA to such
“details”.

Partial NLO term included.

9

In (17) the integral over the hadron momentum fraction is restricted to z ≥ 0.05 to avoid a violation of the mo-
mentum sum rule. The scale dependence of the FF of course emerges from a resummation of collinear singularities
via the DGLAP equations and so its use in the k⊥-factorization formula is not entirely justified.

B. Hybrid formalism

Moving away from central rapidity towards the projectile fragmentation region its wave function is probed at
larger and larger momentum fraction x1 which will eventually exceed x = 0.01. In this case the so-called hybrid
formalism [30] is better suited for particle production. We shall employ the following expression for the differential
cross section for production of a hadron with transverse momentum k and pseudorapidity7 η:

dNpA→hX

dη d2k
= Kh

([
dNh

dη d2k

]

el

+

[
dNh

dη d2k

]

inel

)
(18)

where the subscripts el and inel stand for elastic and inelastic contributions8, respectively. We again allow for the
presence of a K-factor, Kh, to absorb higher order corrections. The first term in Eq. (18), the elastic contribution,
is given by [30]

[
dNh

dη d2k

]

el

=
1

(2π)2

∫ 1

xF

dz

z2

[
∑

q

x1fq/p(x1, Q
2) ÑF

(
x2,

pt
z

)
Dh/q(z,Q

2)

+ x1fg/p(x1, Q
2) ÑA

(
x2,

pt
z

)
Dh/g(z,Q

2)
]
, (19)

and corresponds to scattering of collinear partons from the projectile on the target. The 2 → 1 kinematics sets
x1,2 = (pt/z

√
sNN ) exp(±y) and xF $ (pt/

√
sNN ) exp η. The projectile is described by standard collinear parton

distribution functions (PDFs) but its partons acquire a large transverse momentum k due to (multiple) scattering
from the small-x fields of the nucleus which are described by the corresponding UGDs in the adjoint or fundamental
representation ÑA(F ), see Eqs. (7). The hadronization of the scattered parton into a hadron is described by the
usual fragmentation function (FF) of collinear factorization, Dh/j . Both the PDF and the FF are evaluated at the
factorization scale Q. We shall explore the sensitivity to the choice of factorization scale by letting it vary within
the range Q = (k/2, 2k).
The inelastic term in Eq. (18) has been calculated recently in ref. [31]. It reads

[
dNh

dη d2k

]

inel

=
αs(Q)

2π2

∫ 1

xF

dz

z2
z4

k4

∫ Q d2q

(2π)2
q2ÑF (x2, q)x1

∫ 1

x1

dξ

ξ

∑

i,j=q,q̄,g

wi/j(ξ)Pi/j(ξ)fj(
x1

ξ
, Q2)Dh/j(z,Q

2) , (20)

where Pi/j are the LO DGLAP splitting functions for the different parton species i, j = q, q̄, g. Note that endpoint
singularities for q → q and g → g splitting are regulated via the usual “+ prescription”; therefore, the contribution
from Eq. (20) is actually negative in parts of phase space. Explicit expressions for the weight functions wi/j(ξ)
are given in Eqs. (74-77) of ref [31] and shall not be repeated here.
The inelastic term corresponds to an alternative channel for hard production: partons with high transverse

momentum can occur in the wave function of the incoming proton due to large-angle radiation. Those may then
scatter off the target with only a small momentum transfer to finally fragment into a high-pt hadron. It should be
noted that the inelastic term accounts for part of the full NLO corrections to the hybrid formalism. A calculation
of the full NLO corrections to the hybrid formalism has been recently presented in [35, 36]. While a numerical
implementation of the full NLO corrections would be necessary, such task is beyond the scope of this paper and
we leave it for future work. The evaluation of the inelastic term in this work provides an estimate of the numerical
importance of the full NLO corrections.
The inelastic contribution involves an additional power of the coupling αs but also comes with a factor ∼

log(k2/Q2
s,T ) [31] and so is expected to be significant at high transverse momenta and not too forward rapidities,

far from the kinematic boundary. These expectations have been first verified numerically in ref. [37]. Finally, we
note that the scale for the running of the coupling in Eq. (20) cannot be determined from the calculation of ref. [31]

7 At forward rapidities the distinction between η and y becomes less relevant.
8 As a NLO contribution, the latter need not be positive definite, see below.

Splitting function contains ‘plus’ prescription. Can lead to negative results in some parts of the phase space.

Altinoluk, Kovner

Indeed this NLO correction takes over the LO result for large transverse momenta.

Since this is partial NLO correction one needs to evaluate full NLO term.
Complete NLO correction might be very large.



Nuclear ratios
Albacete-Marquet

LO formula stays flat and < 1 for large pT.
Need NLO to match to collinear formula.
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.
To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon

radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.
Two important variables are introduced to separate different factorizations for the physics involved in this process:

the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.
Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-

tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A → h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order

Factorization formula in coordinate space at one loop
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.
To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon

radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.
Two important variables are introduced to separate different factorizations for the physics involved in this process:

the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.
Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-

tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A → h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.
To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon

radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.
Two important variables are introduced to separate different factorizations for the physics involved in this process:

the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.
Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-

tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A → h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.
To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon

radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.
Two important variables are introduced to separate different factorizations for the physics involved in this process:

the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.
Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-

tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A → h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.
To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon

radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.
Two important variables are introduced to separate different factorizations for the physics involved in this process:

the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.
Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-

tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A → h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order
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FIG. 3. The real diagrams for the next-to-leading order quark production qA → q +X.

For a right-moving massless quark, with initial longitudinal momentum p+ and no transverse momentum, the splitting
wave function in transverse coordinate space is given by

ψλ
αβ(p

+, k+1 , r⊥) = 2πi

√
2

k+1






r⊥·ε(1)
⊥

r2
⊥

(δα−δβ− + ξδα+δβ+), λ = 1,

r⊥·ε(2)
⊥

r2
⊥

(δα+δβ+ + ξδα−δβ−), λ = 2.
, (14)

where λ is the gluon polarization, α,β are helicities for the incoming and outgoing quarks, and 1 − ξ = k+
1

p+ is
the momentum fraction of the incoming quark carried by the gluon. Since the Wilson lines in the fundamental
representation and the adjoint representation resum the multiple interactions of quarks and gluons with the nucleus
target, respectively, one can easily see that these four terms in the last two lines of the Eq. (11) correspond to those

four graphs in Fig. 3. The S(6)
Y term which corresponds to Fig. 3 (a) and resums all the multiple interactions between

the quark-gluon pair and the nucleus target, represents the case where interactions take place after the splitting both

in the amplitude and in the conjugate amplitude. The S(2)
Y term which comes from Fig. 3 (b), resums the interactions

before the splitting only and the S(3)
Y terms represent the interference terms as shown in Fig. 3 (c) and (d).

There are two contributions for inclusive hadron production at the next-to-leading order, namely, quark productions
associated with Dh/q which is indicated by the cross in Fig. 3 (while the gluon is integrated) and gluon productions
associated with the fragmentation function Dh/g (while the quark is integrated).
Let us study the former case by integrating over the phase space of the final state gluon (k+1 , k1⊥). We can cast

the real contribution into

αs

2π2

∫
dz

z2
Dh/q(z)

∫ 1

τ/z
dξ

1 + ξ2

1− ξ
xq(x)

{
CF

∫
d2kg⊥I(k⊥, kg⊥)

+
Nc

2

∫
d2kg⊥d

2kg1⊥J (k⊥, kg⊥, kg1⊥)

}
, (15)

where x = τ/zξ and CF = (N2
c − 1)/2Nc, and I and J are defined as

I(k⊥, kg⊥) = F(kg⊥)

[
k⊥ − kg⊥

(k⊥ − kg⊥)2
−

k⊥ − ξkg⊥
(k⊥ − ξkg⊥)2

]2
,

J (k⊥, kg⊥, kg1⊥) =
[
F(kg⊥)δ

(2) (kg1⊥ − kg⊥)− G(kg⊥, kg1⊥)
] 2(k⊥ − ξkg⊥) · (k⊥ − kg1⊥)

(k⊥ − ξkg⊥)2(k⊥ − kg1⊥)2
,

with G(k⊥, l⊥) =
∫

d2x⊥d2y⊥d2b⊥
(2π)4

e−ik⊥·(x⊥−b⊥)−il⊥·(b⊥−y⊥)S(4)
Y (x⊥, b⊥, y⊥), (16)
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and the color matrices can be removed using the Fierz identity T a
ijT

a
kl =

1
2δilδjk − 1

2Nc
δijδkl. It is straightforward to

show that

S̃(2)
Y (x⊥, y⊥) =

1

N2
c − 1

[〈
TrU(x⊥)U

†(y⊥)TrU(y⊥)U
†(x⊥)

〉
Y
− 1

]
, (9)

which, in the large Nc limit, allows us to write

F̃(k⊥) =

∫
d2x⊥d2y⊥

(2π)2
e−ik⊥·(x⊥−y⊥)S(2)

Y (x⊥, y⊥)S
(2)
Y (y⊥, x⊥) . (10)

It is very important to keep in mind that the normalization of the dipole amplitudes S(2)(x⊥, y⊥) is unity when
x⊥ = y⊥. In addition, since normally

〈
TrU(x⊥)U †(y⊥)

〉
Y

is real, it is easy to see that S(2)(x⊥, y⊥) = S(2)(y⊥, x⊥).

If we further neglect the impact parameter dependence, one will find that S(2)(x⊥, y⊥) = exp
[
−Q2

s(x⊥−y⊥)2

4

]
in the

McLerran-Venugopalan model, where Qs is the saturation momentum which characterizes the density of the target
nucleus. The analytical form of the dipole amplitude can help us to test the properties of dipole amplitudes mentioned
above.
We would like to emphasize that in Eq. (5) we do not include the transverse momentum dependence in the incoming

parton distribution from the nucleon. In the forward pA collisions, the transverse momentum dependence from the
incoming parton distribution of the nucleon is not as important as that from the nucleus target. Therefore, in the
current calculations, we neglect this effect. As a consistent check, the one-loop calculations in the following support
this assumption. In particular, the collinear divergence associated with the incoming parton distribution contains no
transverse momentum dependence.

III. THE NEXT-TO-LEADING ORDER CROSS SECTION

In this section, we will present the detailed calculations for the NLO corrections to the leading order result in
Eq. (5). There are four partonic channels: q → qg, g → gg, q → gq, g → qq̄. We will carry out the calculations for
these channels separately.

A. The quark channel q → q

The quark production contribution contains the real and virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q → qg first. The real diagrams with a quark (with transverse coordinate b⊥) and gluon (with
transverse coordinate x⊥) in the final state, as shown in Fig. 3, have been studied in Ref. [30–32]. We take eq.(78)
of Ref. [32] as our starting point which gives2

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x⊥

(2π)2
d2x′

⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′

⊥
)e−ik2⊥·(b⊥−b′

⊥
)
∑

λαβ

ψλ∗
αβ(u

′
⊥)ψ

λ
αβ(u⊥)

×
[
S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)

]
. (11)

where u⊥ = x⊥ − b⊥, u′
⊥ = x′

⊥ − b′⊥, v⊥ = (1 − ξ)x⊥ + ξb⊥, v′⊥ = (1 − ξ)x′
⊥ + ξb′⊥ and

S(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) =

1

CFNc

〈
Tr

(
U(b⊥)U

†(b′⊥)T
dT c

) [
W (x⊥)W

†(x′
⊥)

]cd〉

Y
, (12)

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1

CFNc

〈
Tr

(
U(b⊥)T

dU †(v′⊥)T
c
)
W cd(x⊥)

〉
Y
. (13)

2 For convention reasons, we have interchanged the definition of z and 1− z and replaced the variable z by ξ.
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To derive the above expressions, Eq. (30) is used repeatedly. It is also useful to notice that

∫
d2k1⊥e

−ik1⊥·r̄⊥ ln
(k1⊥ − ξ′k⊥)2

k2⊥
= 4π

[
δ(r̄⊥)

∫
d2r′⊥
r′2⊥

eik⊥·r′
⊥ −

1

r̄2⊥
e−iξ′k⊥·r̄⊥

]
, (34)

which can lead us to the final factorized formula.
By combining the collinear singularities from both real and virtual diagrams, we find the coefficient of the collinear

singularities becomes Pqq(ξ) which is defined as

Pqq(ξ) =

(
1 + ξ2

1− ξ

)

+

=
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ). (35)

Now we are ready to remove the collinear singularities by redefining the quark distribution and the quark fragmentation
function as follows

q(x, µ) = q(0)(x)−
1

ε̂

αs(µ)

2π

∫ 1

x

dξ

ξ
CFPqq(ξ)q

(
x

ξ

)
, (36)

Dh/q(z, µ) = D(0)
h/q(z)−

1

ε̂

αs(µ)

2π

∫ 1

z

dξ

ξ
CFPqq(ξ)Dh/q

(
z

ξ

)
, (37)

which is in agreement with the well-known DGLAP equation for the quark channel. We will be able to recover the
full DGLAP equation once we finish the calculation on all channels. Using Eq. (5) and combine it with the NLO real
and virtual contributions, it is almost trivial to show Eq. (36). It is a little bit less trivial to derive Eq. (37). By
combining the relevant terms in the real and virtual contributions, we obtain a term which reads

−
1

ε̂

αs(µ)

2π

∫ 1

τ

dz

z2
Dh/q(z)

∫ 1

τ/z
dξCFPqq(ξ)xq(x)

1

ξ2
F
(
k⊥
ξ

)
. (38)

By changing variable z′ = zξ, we can rewrite the above term as

−
1

ε̂

αs(µ)

2π

∫ 1

τ

dz′

z′2
xq(x)F

(p⊥
z′

)∫ 1

z′

dξ

ξ
CFPqq(ξ)Dh/q

(
z′

ξ

)
, (39)

which allows us to arrive at Eq. (37) easily by combining this term with Eq. (5).
One might worry about the term which is proportional to 1

2πF (k⊥)
(
CF − Nc

2

)
ln(1− ξ)2 since it is logarithmically

divergent when ξ → 1. Let us show that this singularity will also cancel between the real and virtual contributions as
follows

[∫ 1

τ/z
dξ

1 + ξ2

(1− ξ)+
xq(x) ln(1− ξ)2 − xpq(xp)

∫ 1

0
dξ

1 + ξ2

(1− ξ)+
ln(1− ξ)2

]

=

∫ 1

τ/z
dξ

(
(1 + ξ2) ln(1 − ξ)2

1− ξ

)

+

xq(x), (40)

where the first term on the left hand side of the above equation comes from the real diagrams while the second term
comes from the virtual graphs. Here we have used Eq. (24) again.

3. Finite contributions

Now we have removed all the collinear singularities by renormalizing the quark distribution and the quark fragmen-
tation function. The rest of the contribution should be finite. The last procedure is to assemble all the finite terms
into a factorized formula. For the quark channel contribution: qA → h +X , we find that the factorization formula
can be explicitly written as

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

∫
d2x⊥d2y⊥

(2π)2

{
S(2)
Y (x⊥, y⊥)

[
H(0)

2qq +
αs

2π
H(1)

2qq

]

+

∫
d2b⊥
(2π)2

S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq

}
, (41)

final factorization formula for quark-quark channel

with hard factors (finite contributions  free of any divergencies)
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up to one-loop order. The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2qq = e−ik⊥·r⊥δ(1 − ξ) , (42)

where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. Our objective here is to compute the hard coefficients H(1)
2qq and H(1)

4qq . It is just

straightforward to show that H(1)
2qq reads as follows

H(1)
2qq = CFPqq(ξ) ln

c20
r2⊥µ

2

(
e−ik⊥·r⊥ +

1

ξ2
e−i

k⊥
ξ ·r⊥

)
− 3CF δ(1 − ξ)e−ik⊥·r⊥ ln

c20
r2⊥k

2
⊥

− (2CF −Nc) e
−ik⊥·r⊥

[
1 + ξ2

(1− ξ)+
Ĩ21 −

((
1 + ξ2

)
ln (1− ξ)2

1− ξ

)

+

]

, (43)

where the terms in the first line come from the finite logarithmic terms in I1(k⊥) and Iv(k⊥), and Ĩ21 is calculated
from I21(k⊥) which yields

Ĩ21 =

∫
d2b⊥
π

{

e−i(1−ξ)k⊥·b⊥

[
b⊥ · (ξb⊥ − r⊥)

b2⊥ (ξb⊥ − r⊥)
2 −

1

b2⊥

]

+ e−ik⊥·b⊥ 1

b2⊥

}

. (44)

It is clear that the last term comes from the ln(1 − ξ)2 terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2(k⊥) type term) drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects as we will show in the following sections. Furthermore, by choosing
µ = c0/r⊥ for the factorization scale, we can further simplify the above expressions. In the end, only the last term in
the first line of the Eq. (43) survives. Since r⊥ is of the order 1/Qs in the saturation regime, one can easily see that
the factorization scale µ " Qs in terms of the above choice.

The second hard coefficient H(1)
4qq is related to the non-linear terms such as I3(k⊥) and I3v(k⊥) which give

H(1)
4qq = −4πNce

−ik⊥·r⊥

{

e−i 1−ξ
ξ k⊥·(x⊥−b⊥) 1 + ξ2

(1− ξ)+

1

ξ

x⊥ − b⊥

(x⊥ − b⊥)
2 ·

y⊥ − b⊥

(y⊥ − b⊥)
2

−δ(1− ξ)

∫ 1

0
dξ′

1 + ξ′2

(1− ξ′)+

[
e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]}

, (45)

where the first and second term in the curly brackets are calculated from I3(k⊥) and I3v(k⊥), respectively.
To summarize the above results, we have demonstrated the QCD factorization for inclusive hadron production in

the quark channel of pA collisions in the saturation formalism, and we have computed the NLO cross section in this
processes. Clearly, the naive form of the k⊥ factorization formula, which involves the convolution of unintegrated
gluon distributions in the transverse momentum space, does not hold. Other channels can be calculated accordingly
following the same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in the well-known McLerran-Venugopalan (MV) model[19, 34,
35]. In terms of the phenomenological application with additional parametrization of the saturation momentum, it
is also known as Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV and GBW model, if we neglect the impact
parameter dependence for the sake of simplicity, the dipole scattering amplitude is parametrized as

S(2)
MV(x⊥, y⊥) = exp

[
−
(x⊥ − y⊥)2Q2

s

4

]
, (46)

which leads to F(q⊥) = S⊥

πQ2
s
exp

(
− q2

⊥

Q2
s

)
, where S⊥ is the transverse area of the target hadron. In addition, if we

further take the large Nc limit, the integral d2x⊥d2y⊥d2b⊥ can be performed explicitly, which leads to the differential
cross section depending on p⊥ and Qs,

d3σp+A→h+X
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=

∫
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up to one-loop order. The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2qq = e−ik⊥·r⊥δ(1 − ξ) , (42)

where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. Our objective here is to compute the hard coefficients H(1)
2qq and H(1)

4qq . It is just

straightforward to show that H(1)
2qq reads as follows

H(1)
2qq = CFPqq(ξ) ln

c20
r2⊥µ

2
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1
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k⊥
ξ ·r⊥

)
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2
⊥
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−ik⊥·r⊥

[
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Ĩ21 −

((
1 + ξ2

)
ln (1− ξ)2

1− ξ

)

+

]

, (43)

where the terms in the first line come from the finite logarithmic terms in I1(k⊥) and Iv(k⊥), and Ĩ21 is calculated
from I21(k⊥) which yields

Ĩ21 =

∫
d2b⊥
π

{

e−i(1−ξ)k⊥·b⊥
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b⊥ · (ξb⊥ − r⊥)
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1
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}

. (44)

It is clear that the last term comes from the ln(1 − ξ)2 terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2(k⊥) type term) drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects as we will show in the following sections. Furthermore, by choosing
µ = c0/r⊥ for the factorization scale, we can further simplify the above expressions. In the end, only the last term in
the first line of the Eq. (43) survives. Since r⊥ is of the order 1/Qs in the saturation regime, one can easily see that
the factorization scale µ " Qs in terms of the above choice.

The second hard coefficient H(1)
4qq is related to the non-linear terms such as I3(k⊥) and I3v(k⊥) which give

H(1)
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2 ·

y⊥ − b⊥
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2

−δ(1− ξ)

∫ 1

0
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(b⊥ − y⊥)2
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⊥
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]}

, (45)

where the first and second term in the curly brackets are calculated from I3(k⊥) and I3v(k⊥), respectively.
To summarize the above results, we have demonstrated the QCD factorization for inclusive hadron production in

the quark channel of pA collisions in the saturation formalism, and we have computed the NLO cross section in this
processes. Clearly, the naive form of the k⊥ factorization formula, which involves the convolution of unintegrated
gluon distributions in the transverse momentum space, does not hold. Other channels can be calculated accordingly
following the same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in the well-known McLerran-Venugopalan (MV) model[19, 34,
35]. In terms of the phenomenological application with additional parametrization of the saturation momentum, it
is also known as Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV and GBW model, if we neglect the impact
parameter dependence for the sake of simplicity, the dipole scattering amplitude is parametrized as

S(2)
MV(x⊥, y⊥) = exp

[
−
(x⊥ − y⊥)2Q2

s

4

]
, (46)

which leads to F(q⊥) = S⊥

πQ2
s
exp

(
− q2

⊥

Q2
s

)
, where S⊥ is the transverse area of the target hadron. In addition, if we

further take the large Nc limit, the integral d2x⊥d2y⊥d2b⊥ can be performed explicitly, which leads to the differential
cross section depending on p⊥ and Qs,

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

[
H̄(0)
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αs

2π
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2π
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]
, (47)
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2qq reads as follows
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where the terms in the first line come from the finite logarithmic terms in I1(k⊥) and Iv(k⊥), and Ĩ21 is calculated
from I21(k⊥) which yields

Ĩ21 =

∫
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. (44)

It is clear that the last term comes from the ln(1 − ξ)2 terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2(k⊥) type term) drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects as we will show in the following sections. Furthermore, by choosing
µ = c0/r⊥ for the factorization scale, we can further simplify the above expressions. In the end, only the last term in
the first line of the Eq. (43) survives. Since r⊥ is of the order 1/Qs in the saturation regime, one can easily see that
the factorization scale µ " Qs in terms of the above choice.

The second hard coefficient H(1)
4qq is related to the non-linear terms such as I3(k⊥) and I3v(k⊥) which give

H(1)
4qq = −4πNce

−ik⊥·r⊥

{
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]}

, (45)

where the first and second term in the curly brackets are calculated from I3(k⊥) and I3v(k⊥), respectively.
To summarize the above results, we have demonstrated the QCD factorization for inclusive hadron production in

the quark channel of pA collisions in the saturation formalism, and we have computed the NLO cross section in this
processes. Clearly, the naive form of the k⊥ factorization formula, which involves the convolution of unintegrated
gluon distributions in the transverse momentum space, does not hold. Other channels can be calculated accordingly
following the same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in the well-known McLerran-Venugopalan (MV) model[19, 34,
35]. In terms of the phenomenological application with additional parametrization of the saturation momentum, it
is also known as Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV and GBW model, if we neglect the impact
parameter dependence for the sake of simplicity, the dipole scattering amplitude is parametrized as

S(2)
MV(x⊥, y⊥) = exp

[
−
(x⊥ − y⊥)2Q2

s

4

]
, (46)

which leads to F(q⊥) = S⊥

πQ2
s
exp

(
− q2

⊥

Q2
s

)
, where S⊥ is the transverse area of the target hadron. In addition, if we

further take the large Nc limit, the integral d2x⊥d2y⊥d2b⊥ can be performed explicitly, which leads to the differential
cross section depending on p⊥ and Qs,

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

[
H̄(0)

2qq +
αs
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]
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up to one-loop order. The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2qq = e−ik⊥·r⊥δ(1 − ξ) , (42)

where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. Our objective here is to compute the hard coefficients H(1)
2qq and H(1)

4qq . It is just

straightforward to show that H(1)
2qq reads as follows
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)
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[
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((
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)
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)

+

]

, (43)

where the terms in the first line come from the finite logarithmic terms in I1(k⊥) and Iv(k⊥), and Ĩ21 is calculated
from I21(k⊥) which yields

Ĩ21 =

∫
d2b⊥
π

{

e−i(1−ξ)k⊥·b⊥

[
b⊥ · (ξb⊥ − r⊥)

b2⊥ (ξb⊥ − r⊥)
2 −

1

b2⊥

]

+ e−ik⊥·b⊥ 1

b2⊥

}

. (44)

It is clear that the last term comes from the ln(1 − ξ)2 terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2(k⊥) type term) drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects as we will show in the following sections. Furthermore, by choosing
µ = c0/r⊥ for the factorization scale, we can further simplify the above expressions. In the end, only the last term in
the first line of the Eq. (43) survives. Since r⊥ is of the order 1/Qs in the saturation regime, one can easily see that
the factorization scale µ " Qs in terms of the above choice.

The second hard coefficient H(1)
4qq is related to the non-linear terms such as I3(k⊥) and I3v(k⊥) which give

H(1)
4qq = −4πNce

−ik⊥·r⊥

{

e−i 1−ξ
ξ k⊥·(x⊥−b⊥) 1 + ξ2

(1− ξ)+
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∫ 1

0
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1 + ξ′2
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[
e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]}

, (45)

where the first and second term in the curly brackets are calculated from I3(k⊥) and I3v(k⊥), respectively.
To summarize the above results, we have demonstrated the QCD factorization for inclusive hadron production in

the quark channel of pA collisions in the saturation formalism, and we have computed the NLO cross section in this
processes. Clearly, the naive form of the k⊥ factorization formula, which involves the convolution of unintegrated
gluon distributions in the transverse momentum space, does not hold. Other channels can be calculated accordingly
following the same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in the well-known McLerran-Venugopalan (MV) model[19, 34,
35]. In terms of the phenomenological application with additional parametrization of the saturation momentum, it
is also known as Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV and GBW model, if we neglect the impact
parameter dependence for the sake of simplicity, the dipole scattering amplitude is parametrized as

S(2)
MV(x⊥, y⊥) = exp

[
−
(x⊥ − y⊥)2Q2

s

4

]
, (46)

which leads to F(q⊥) = S⊥

πQ2
s
exp

(
− q2

⊥

Q2
s

)
, where S⊥ is the transverse area of the target hadron. In addition, if we

further take the large Nc limit, the integral d2x⊥d2y⊥d2b⊥ can be performed explicitly, which leads to the differential
cross section depending on p⊥ and Qs,

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

[
H̄(0)

2qq +
αs

2π
H̄(1)

2qq +
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2π
H̄(1)

4qq

]
, (47)

Other channels have similar structure

LO

NLO



Numerical evaluation

• Full implementation of NLO hard  factors in the numerical code 
SOLO (Saturation physics at One Loop Order).

• Running coupling LL BK equation for the unintegrated gluon 
distribution.  Additional runs with fixed coupling BK as well as GBW 
and MV models.

• MSTW 2008 NLO parton distributions, and DSS NLO 
fragmentation functions.

• Simulations for RHIC kinematics: Y=2.2,Y=3.2 (BRAHMS),Y=4 
(STAR) with

• Results calculated for different values of factorization scale (1.4-10 
GeV).

p
s = 200 GeV



NLO calculation: RHIC

Positive correction for low values of pT, high rapidity.
Shape comparable (within the kinematic range).

Bands indicate range of scale variation, smaller at NLO than at LO.
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FIG. 1: Comparisons of BRAHMS [10] (h�) and STAR [11] (⇡0) yields in dAu collisions to results of the numerical calculation
with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed using µ

2 = 10GeV2 to 50GeV2.

tion becomes negative increases with rapidity, as can be
seen from Fig. 1. Once the hadron transverse momentum
p? is larger than Q

s

(x
g

), the NLO correction starts to
become very large and negative. This indicates that we
need to either go beyond NLO or perform some sort of
resummation when p? > Q

s

(x
g

), due to this theoreti-
cal limitation of the dilute-dense factorization formalism
at NLO. This is an important problem but it lies out-
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FIG. 2: Comparisons of BRAHMS data [10] at ⌘ = 3.2 with
the theoretical results for four choices of gluon distribution:
GBW, MV with ⇤ = 0.24GeV, BK solution with fixed cou-
pling at ↵

s

= 0.1, and rcBK with ⇤QCD = 0.1GeV. The edges
of the solid bands show results for µ2 = 10GeV2 to 50GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

side the scope of the current work and we will leave this
to future study. Given these limitations, we expect the
dilute-dense factorization formalism to work much better
for more forward rapidity regions. This trend is indeed
observed in Fig. 1 and Fig. 3. Nevertheless, as shown in
all the plots, the results computed from SOLO are stable
and reliable as long as p? < Q

s

(x
g

).
Furthermore, we have also run SOLO with three

other choices of dipole gluon distribution: the Golec-
Biernat and Wustho↵ (GBW) model [34], the McLerran-
Venugopalan (MV) model [4], and the solution to the
fixed coupling BK equation. As shown in Fig. 2, all four
parametrizations give similar results and agree with the
BRAHMS data in the p? < Q

s

region. For other plots,
we only use the rcBK solution, which is the most sophis-
ticated parametrization.
Fig. 3 shows predictions made by SOLO for pPb col-

lisions at high pseudorapidities which are accessible at
LHC detectors, in particular 5.3  ⌘  6.5 for TOTEM’s
T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,
our prediction in the left plot should only be valid when
p? < 3GeV, which is about the size of the saturation
momentum at the corresponding rapidity.
One of the advantages of the NLO results is the signif-

icantly reduced scale dependence as shown in Fig. 4. In
principle, cross sections for any physical observable, if it
could be calculated up to all order, should be completely
independent of the factorization scale µ. However, as
shown in Fig. 4, the LO cross section is a monotonically
decreasing function of the factorization scale µ. This is
well-known and is simply due to the fact that an increase
of µ causes both the parton distribution function (in the
region x > 0.1) and the fragmentation function (in the



NLO calculation RHIC

Low rapidity, high pT the NLO correction dominates the cross section 
which becomes negative. The point at which the calculation breaks down 

depends on the shape of the gluon distribution.
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side the scope of the current work and we will leave this
to future study. Given these limitations, we expect the
dilute-dense factorization formalism to work much better
for more forward rapidity regions. This trend is indeed
observed in Fig. 1 and Fig. 3. Nevertheless, as shown in
all the plots, the results computed from SOLO are stable
and reliable as long as p? < Q

s

(x
g

).
Furthermore, we have also run SOLO with three

other choices of dipole gluon distribution: the Golec-
Biernat and Wustho↵ (GBW) model [34], the McLerran-
Venugopalan (MV) model [4], and the solution to the
fixed coupling BK equation. As shown in Fig. 2, all four
parametrizations give similar results and agree with the
BRAHMS data in the p? < Q

s

region. For other plots,
we only use the rcBK solution, which is the most sophis-
ticated parametrization.
Fig. 3 shows predictions made by SOLO for pPb col-

lisions at high pseudorapidities which are accessible at
LHC detectors, in particular 5.3  ⌘  6.5 for TOTEM’s
T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,
our prediction in the left plot should only be valid when
p? < 3GeV, which is about the size of the saturation
momentum at the corresponding rapidity.
One of the advantages of the NLO results is the signif-

icantly reduced scale dependence as shown in Fig. 4. In
principle, cross sections for any physical observable, if it
could be calculated up to all order, should be completely
independent of the factorization scale µ. However, as
shown in Fig. 4, the LO cross section is a monotonically
decreasing function of the factorization scale µ. This is
well-known and is simply due to the fact that an increase
of µ causes both the parton distribution function (in the
region x > 0.1) and the fragmentation function (in the
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High rapidity, calculation stays positive until moderate values of pT.
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included, using the rcBK gluon distribution. On the left, we show results for ⇡

� yields at ⌘ = 6.375 (YCM = 5.91 in the
center of mass frame) which falls in the range of pseudorapidities detected by TOTEM, and on the right, for ⇡

0 yields at
⌘ = 8.765 (YCM = 8.3) which falls in the range detected by LHCf. The edges of the solid bands were computed using
µ

2 = 20GeV2 to 100GeV2 on the left and µ

2 = 2GeV2 to 10GeV2 on the right.

region z > 0.2) to decrease. Therefore, one has to choose
the scale µ properly for LO calculations. By including
the NLO corrections, which cancels all the scale depen-
dence up to one-loop order, we find that the dependence
on µ is sharply reduced in the NLO cross section except
for very low µ

2 values. In other words, the factorization
scale can be chosen from a large range of values without
changing the cross sections much. This greatly increases
the reliability of our calculation and reduces the uncer-
tainty of our prediction. In addition, Fig. 4 indicates
that the best choice of factorization scale µ should be
about two or maybe three times the average transverse
momentum of the produced hadron. This helps us to
choose a reasonable range of µ2 to set the error band for
our numerical analysis.

4. Discussion and Conclusion. As an important first
step towards the NLO phenomenology in the saturation
physics, we have developed a program called SOLO which
allows us to incorporate most of the NLO corrections for
forward single hadron productions in pA collisions. We
have used recent theoretical results for forward hadron
production at NLO accuracy, which demonstrate the fac-
torization of collinear and rapidity divergencies, together
with NLO parton distribution functions and fragmenta-
tion functions, as well as the solution to the BK equa-
tion with running coupling. We obtained decent agree-
ment with the experimental data from RHIC and we have
made predictions for the forward production in pA colli-
sions at the LHC. The results show the enhancement of
the NLO calculation over the LO calculation at very low
values of p?, and the reduction of the NLO cross section

with respect to the LO calculation at higher values of the
hadron transverse momentum.
We found that the scale dependence is significantly re-

duced at NLO as compared to the lowest order result.
We also found that the results turn negative for higher
values of p

T

above some critical value. This critical value
increases with rising rapidity, thus justifying the calcu-
lation for the forward region. Several extensions of this
work are possible. The large negative value of the NLO
correction may imply the need to include higher order
corrections or some resummation in order to stabilize the
result beyond the critical value of p?. Also, for the com-
plete NLL analysis one would need to evaluate the dipole
gluon distribution using the NLL BK equation. These are
important issues that certainly deserve separate studies.
Nevertheless, this calculation is important progress in

small-x physics phenomenology beyond LL accuracy, and
it provides predictions for pA collisions at the LHC with
the theoretical uncertainty under control.
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Significant reduction of the scale dependence at NLO as compared with the LO, 
except at very low values.

Sharp drop in the running coupling case is caused by the breakdown of the calculation 
at large values of the coupling.
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hTr[U(x?)U†(b?)]Tr[U(b?)U †(y?)]ixa . To compute the cross section in dAu collisions,

we will use the same formula; we assume that we can just include the additional parton distributions from the neutron
according to isospin symmetry.
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where k? = p?/z as before, and the expressions for x

a

and x

0 are given below in Eqs. (9). The dipole gluon
distribution is normalized according to the following equations:
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where S? represents the transverse area of the target nucleus and x

0
G(x0

, µ) is the integrated gluon distribution from
the nucleus, with µ being the renormalization scale. In the small-x formalism, it is believed that µ ' Q

s

as explicitly
shown in Ref. [17, 18].

Before demonstrating the matching to the collinear factorization, let us first take a closer look at the kinematics
in the small-x formalism. For 2 ! 2 processes, one can easily obtain the following exact kinematic relations from
energy-momentum conservation (details are in appendix A):
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where the kinematic variables are to be interpreted as shown in Fig. 1.
Strictly speaking, the small-x factorization derived in Ref. [17, 18] requires that the center-of-mass energy s ! 1

while x is kept large, which indicates that the forward rapidity y should also be kept large to maintain the relation (9a)
between x,

p
s, and y. In this limit, it is straightforward to see that x

a

! 0 as s ! 1. However,
p
s is only 200GeV

at RHIC, which is not particularly large. In order to apply the small-x calculation to phenomenology, therefore, we
need to pay attention to the kinematics and ensure that the small-x factorization is in fact applicable [28].

In the analysis of the hybrid factorization in the small-x formalism, Ref. [17, 18], what we have done is take k? to
be in the vicinity of k

g?, which is of the order of the saturation momentum Q
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or less when the gluon distribution
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g?) is saturated. Under this assumption, one can approximately write x
a
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This keeps ⇠ less than 1, except at the single point k? = k

g? which makes a negligible contribution to the integral.
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FIG. 1. A cartoon of the 2 ! 2 subprocess of the NLO q ! qg channel interaction, with selected momenta and momentum
fractions labeled, as well as the rapidity y of the detected hadron. The momentum fractions z and ⇠ are defined by p? = zk?
and k

+ = (1� ⇠)xp+p , and x is the longitudinal momentum fraction of the incoming quark with respect to the proton projectile.

what happened in the phenomenological small-x calculations for these observables in the last few years prior to pA
collisions at the LHC.

The goal of this paper is to build a consistent and rigorous framework to match the small-x saturation formalism
and the collinear factorization for forward inclusive hadron productions in pA collisions. We find that by taking the
exact kinematics for finite

p
s into account, we obtain a result from collinear factorization which smoothly matches to

the next-to-leading order small-x factorization result. Under the exact kinematics, we find complete agreement for all
partonic channels between these two formalisms at su�ciently high energy when t-channel gluon exchanges become
dominant.

Our approach is based on theoretical calculations for two-particle production in forward pA collisions in the small-
x factorization formalism [25, 26]. It has been shown that they lead to a consistent picture for the di↵erential
cross sections in the so-called correlation limits, as compared to the collinear (and transverse momentum-dependent)
factorization calculations for the same observables. When we integrate out the phase space of one particle in the
two particle di↵erential cross section, we obtain the formula for single inclusive hadron production at large transverse
momentum. This naturally provides us a matching with the collinear factorization calculation for inclusive hadron
production in pA collisions. In particular, the collinear factorization result is the leading power expansion in Q

2
s

/k

2
?

of the formulae derived in the small-x formalism. Through a detailed analytical comparison, we build a systematic
and complete connection to the collinear factorization of the calculation in the small-x formalism. This connection
will strengthen the predictive power of the calculations which take into account small-x physics.

II. MATCHING COLLINEAR FACTORIZATION AND SMALL-x FACTORIZATION

We start with the two-particle cross section, derived in Refs. [17, 18, 25–27], which exhibits perfect matching
between the small-x and collinear factorization results for the two final state particles at large transverse momenta.
Integrating over the phase space of one of the particles gives us the single inclusive cross section at forward rapidity,
with y and p? defined as the rapidity and transverse momentum, respectively, of the produced hadron. We will then
demonstrate that this matches the equivalent result from collinear factorization.

A. Single inclusive production in the small-x formalism

For example, consider the 2 ! 2 subprocess in the q ! qg channel with the final state quark fragmenting into the
hadron, q ! h(y, p?), as shown in Figure 1. We integrate its cross section over the transverse momentum of the final
state gluon by applying the delta function reflecting momentum conservation in the 2 ! 2 subprocess, which results
in the di↵erential cross section for single inclusive hadron production:
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what happened in the phenomenological small-x calculations for these observables in the last few years prior to pA
collisions at the LHC.

The goal of this paper is to build a consistent and rigorous framework to match the small-x saturation formalism
and the collinear factorization for forward inclusive hadron productions in pA collisions. We find that by taking the
exact kinematics for finite

p
s into account, we obtain a result from collinear factorization which smoothly matches to

the next-to-leading order small-x factorization result. Under the exact kinematics, we find complete agreement for all
partonic channels between these two formalisms at su�ciently high energy when t-channel gluon exchanges become
dominant.

Our approach is based on theoretical calculations for two-particle production in forward pA collisions in the small-
x factorization formalism [25, 26]. It has been shown that they lead to a consistent picture for the di↵erential
cross sections in the so-called correlation limits, as compared to the collinear (and transverse momentum-dependent)
factorization calculations for the same observables. When we integrate out the phase space of one particle in the
two particle di↵erential cross section, we obtain the formula for single inclusive hadron production at large transverse
momentum. This naturally provides us a matching with the collinear factorization calculation for inclusive hadron
production in pA collisions. In particular, the collinear factorization result is the leading power expansion in Q
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We start with the two-particle cross section, derived in Refs. [17, 18, 25–27], which exhibits perfect matching
between the small-x and collinear factorization results for the two final state particles at large transverse momenta.
Integrating over the phase space of one of the particles gives us the single inclusive cross section at forward rapidity,
with y and p? defined as the rapidity and transverse momentum, respectively, of the produced hadron. We will then
demonstrate that this matches the equivalent result from collinear factorization.

A. Single inclusive production in the small-x formalism

For example, consider the 2 ! 2 subprocess in the q ! qg channel with the final state quark fragmenting into the
hadron, q ! h(y, p?), as shown in Figure 1. We integrate its cross section over the transverse momentum of the final
state gluon by applying the delta function reflecting momentum conservation in the 2 ! 2 subprocess, which results
in the di↵erential cross section for single inclusive hadron production:
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we will use the same formula; we assume that we can just include the additional parton distributions from the neutron
according to isospin symmetry.
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where k? = p?/z as before, and the expressions for x
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and x
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where S? represents the transverse area of the target nucleus and x
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, µ) is the integrated gluon distribution from
the nucleus, with µ being the renormalization scale. In the small-x formalism, it is believed that µ ' Q
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as explicitly
shown in Ref. [17, 18].

Before demonstrating the matching to the collinear factorization, let us first take a closer look at the kinematics
in the small-x formalism. For 2 ! 2 processes, one can easily obtain the following exact kinematic relations from
energy-momentum conservation (details are in appendix A):
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where the kinematic variables are to be interpreted as shown in Fig. 1.
Strictly speaking, the small-x factorization derived in Ref. [17, 18] requires that the center-of-mass energy s ! 1

while x is kept large, which indicates that the forward rapidity y should also be kept large to maintain the relation (9a)
between x,

p
s, and y. In this limit, it is straightforward to see that x
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! 0 as s ! 1. However,
p
s is only 200GeV

at RHIC, which is not particularly large. In order to apply the small-x calculation to phenomenology, therefore, we
need to pay attention to the kinematics and ensure that the small-x factorization is in fact applicable [28].

In the analysis of the hybrid factorization in the small-x formalism, Ref. [17, 18], what we have done is take k? to
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g?, which is of the order of the saturation momentum Q
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where S? represents the transverse area of the target nucleus and x
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the nucleus, with µ being the renormalization scale. In the small-x formalism, it is believed that µ ' Q
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shown in Ref. [17, 18].
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FIG. 1. A cartoon of the 2 ! 2 subprocess of the NLO q ! qg channel interaction, with selected momenta and momentum
fractions labeled, as well as the rapidity y of the detected hadron. The momentum fractions z and ⇠ are defined by p? = zk?
and k

+ = (1� ⇠)xp+p , and x is the longitudinal momentum fraction of the incoming quark with respect to the proton projectile.

what happened in the phenomenological small-x calculations for these observables in the last few years prior to pA
collisions at the LHC.

The goal of this paper is to build a consistent and rigorous framework to match the small-x saturation formalism
and the collinear factorization for forward inclusive hadron productions in pA collisions. We find that by taking the
exact kinematics for finite

p
s into account, we obtain a result from collinear factorization which smoothly matches to

the next-to-leading order small-x factorization result. Under the exact kinematics, we find complete agreement for all
partonic channels between these two formalisms at su�ciently high energy when t-channel gluon exchanges become
dominant.

Our approach is based on theoretical calculations for two-particle production in forward pA collisions in the small-
x factorization formalism [25, 26]. It has been shown that they lead to a consistent picture for the di↵erential
cross sections in the so-called correlation limits, as compared to the collinear (and transverse momentum-dependent)
factorization calculations for the same observables. When we integrate out the phase space of one particle in the
two particle di↵erential cross section, we obtain the formula for single inclusive hadron production at large transverse
momentum. This naturally provides us a matching with the collinear factorization calculation for inclusive hadron
production in pA collisions. In particular, the collinear factorization result is the leading power expansion in Q

2
s

/k

2
?

of the formulae derived in the small-x formalism. Through a detailed analytical comparison, we build a systematic
and complete connection to the collinear factorization of the calculation in the small-x formalism. This connection
will strengthen the predictive power of the calculations which take into account small-x physics.

II. MATCHING COLLINEAR FACTORIZATION AND SMALL-x FACTORIZATION

We start with the two-particle cross section, derived in Refs. [17, 18, 25–27], which exhibits perfect matching
between the small-x and collinear factorization results for the two final state particles at large transverse momenta.
Integrating over the phase space of one of the particles gives us the single inclusive cross section at forward rapidity,
with y and p? defined as the rapidity and transverse momentum, respectively, of the produced hadron. We will then
demonstrate that this matches the equivalent result from collinear factorization.

A. Single inclusive production in the small-x formalism

For example, consider the 2 ! 2 subprocess in the q ! qg channel with the final state quark fragmenting into the
hadron, q ! h(y, p?), as shown in Figure 1. We integrate its cross section over the transverse momentum of the final
state gluon by applying the delta function reflecting momentum conservation in the 2 ! 2 subprocess, which results
in the di↵erential cross section for single inclusive hadron production:
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collisions at the LHC.
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In exact kinematics for 2 ! 2 k2 = 0 q2 = 0On-shell outgoing particles:
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FIG. 3. Comparison between the STAR ⇡

0 data [2] at pseudorapidity ⌘ = 4 and the LO and NLO small-x calculations [19, 30],
as well as the large p? perturbative results with exact kinematics, at y = 4. As in Fig. 2, the edges of the bands show
µ

2 = 10GeV2 and 50GeV2.
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Appendix A: Derivation of Exact Kinematics

This appendix briefly outlines the derivation of the exact kinematic relations (9). We begin with energy-momentum
conservation in light-cone coordinates (p± = E ± p

z

) for the process shown in Fig. 1:
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Combining the definition of the NLO momentum fraction ⇠, namely ⇠ = k

+

xp

+
p
, with the + component of Eq. (A1) and

assuming the final-state quark is massless (k2 = 0) gives the result x = p?
z⇠

p
s

e

y.

The gluon carries a fraction 1 � ⇠ of the parent quark’s momentum, i.e. 1 � ⇠ = q
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xp

+
p
. Since this is a final state

gluon, we take it to be on shell, q+q� = q
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?. Combining these last two relations with the � component of Eq. (A1)

and the definition of x from the previous paragraph gives
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and then using the transverse component of Eq. (A1) yields the definition of x
a

in Equation (9b).
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µ

2 = 10GeV2 and 50GeV2.
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Appendix A: Derivation of Exact Kinematics

This appendix briefly outlines the derivation of the exact kinematic relations (9). We begin with energy-momentum
conservation in light-cone coordinates (p± = E ± p

z

) for the process shown in Fig. 1:
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Combining the definition of the NLO momentum fraction ⇠, namely ⇠ = k

+
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+
p
, with the + component of Eq. (A1) and

assuming the final-state quark is massless (k2 = 0) gives the result x = p?
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p
s

e

y.

The gluon carries a fraction 1 � ⇠ of the parent quark’s momentum, i.e. 1 � ⇠ = q
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. Since this is a final state

gluon, we take it to be on shell, q+q� = q

2
?. Combining these last two relations with the � component of Eq. (A1)

and the definition of x from the previous paragraph gives
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and then using the transverse component of Eq. (A1) yields the definition of x
a

in Equation (9b).
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where k? = p?/z as before, and the expressions for x

a

and x

0 are given below in Eqs. (9). The dipole gluon
distribution is normalized according to the following equations:
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where S? represents the transverse area of the target nucleus and x

0
G(x0

, µ) is the integrated gluon distribution from
the nucleus, with µ being the renormalization scale. In the small-x formalism, it is believed that µ ' Q

s

as explicitly
shown in Ref. [17, 18].

Before demonstrating the matching to the collinear factorization, let us first take a closer look at the kinematics
in the small-x formalism. For 2 ! 2 processes, one can easily obtain the following exact kinematic relations from
energy-momentum conservation (details are in appendix A):
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where the kinematic variables are to be interpreted as shown in Fig. 1.
Strictly speaking, the small-x factorization derived in Ref. [17, 18] requires that the center-of-mass energy s ! 1

while x is kept large, which indicates that the forward rapidity y should also be kept large to maintain the relation (9a)
between x,
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! 0 as s ! 1. However,
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at RHIC, which is not particularly large. In order to apply the small-x calculation to phenomenology, therefore, we
need to pay attention to the kinematics and ensure that the small-x factorization is in fact applicable [28].
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where x

0 is defined in Eq. (9c). This is exactly the same as Eq. (6), the leading power expansion of the small-x
calculation at large transverse momentum, for given µ in the largeN
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limit. Evidently, keeping the complete kinematics
as shown in Eqs. (9) and thereby restricting x
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to be less than 1 allows us to match the small-x factorization result
to the collinear factorization calculations.

C. Numerical results from combined channels

We have now established that at large k?, the following formula matches the small-x factorization calculation to
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We can now use this formula to compute the high-p? spectrum for the q ! q channel.
Similarly, for the g ! g channel, we can compute accordingly, in the large N
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To build a complete and systematic connection between the collinear factorization and saturation formalism at high
transverse momentum limit, let us continue to examine all the possible channels included in the collinear factorization
and comment on their corresponding contributions in the saturation formalism.

2 One might naively object that the integral in Eq. (8) should cover all of R2, but the physical processes contributing to the integrated
gluon distribution G must be limited to those which satisfy energy-momentum conservation, or equivalently, those in which the gluon
momentum satisfies Eq. (11). So in exact kinematics, the region of integration in Eq. (8) must be the region in which Eq. (11) is fulfilled,
namely R.
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ŝ+ t̂+ û
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2ŝ

1

2(2⇡)3
2⇡�

�
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transverse momentum limit, let us continue to examine all the possible channels included in the collinear factorization
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To build a complete and systematic connection between the collinear factorization and saturation formalism at high
transverse momentum limit, let us continue to examine all the possible channels included in the collinear factorization
and comment on their corresponding contributions in the saturation formalism.

2 One might naively object that the integral in Eq. (8) should cover all of R2, but the physical processes contributing to the integrated
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ŝ+ t̂+ û
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û

2 + ŝ
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transverse momentum limit, let us continue to examine all the possible channels included in the collinear factorization
and comment on their corresponding contributions in the saturation formalism.
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, û = � k

2
?

1� ⇠

. (14)

Substituting the above equations, we will obtain the di↵erential cross section contribution as

d3�

dyd2p?
=

↵

2
s

N

c

Z
dz

z

2
D

h/q

(z)

Z
d⇠

⇠

xq(x)x0
G(x0)

1 + ⇠

2

1� ⇠

⇠

k

4
?

⇥
C

F

(1� ⇠)2 +N

c

⇠

⇤
(15)

where x

0 is defined in Eq. (9c). This is exactly the same as Eq. (6), the leading power expansion of the small-x
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as shown in Eqs. (9) and thereby restricting x
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To build a complete and systematic connection between the collinear factorization and saturation formalism at high
transverse momentum limit, let us continue to examine all the possible channels included in the collinear factorization
and comment on their corresponding contributions in the saturation formalism.

2 One might naively object that the integral in Eq. (8) should cover all of R2, but the physical processes contributing to the integrated
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FIG. 2. Comparison between the BRAHMS h

� data [1] at pseudorapidities ⌘ = 2.2, 3.2 and the LO and NLO small-x
computations [19, 30], as well as the large p? perturbative results with exact kinematics, at y = 2.2, 3.2. The edges of the band
were computed with µ

2 = 10GeV2 and µ

2 = 50GeV2, thus the width of the band indicates the theoretical uncertainty due to
the factorization scale. Calculated results use the rcBK gluon distribution.

At su�ciently high energy, it is well-known that the t-channel gluon exchange graphs dominate the cross section [29],
which allows us to neglect the channels in which q or q̄ are exchanged, such as the qq̄ ! gg and gg ! qq̄ channels.
With the t-channel gluon exchange in mind, one should compute the qq

0 ! qq

0, gq0 ! gq

0, qg0 ! qg

0 and gg

0 ! gg

0

channels in the collinear factorization. Here we use q, g to denote incoming partons from the projectile proton, while
q

0
, g

0 represent partons from the target nucleus. As demonstrated above, after using the same kinematics, we can find
agreement between the collinear factorization result for qg0 ! qg

0 and the NLO saturation result for q ! q, and also
between the collinear gg0 ! gg

0 result and the g ! g channel in the saturation formalism. Furthermore, we find that
the qq

0 ! qq

0 and gq

0 ! gq

0 channels in the collinear factorization correspond to the leading order q ! q and g ! g

contributions in the small-x formalism, respectively. Finally, the o↵-diagonal channels q ! g and g ! q(q̄) in the
saturation formalism, which are always positive and numerically negligible, are related to the qq̄ ! gg and gg ! qq̄

channels in the collinear factorization.
At the end of the day, we can sum up all the contributions in the large p? limit and compare with the BRAHMS

data for y = 2.2 and y = 3.2 in dAu collisions at
p
s = 200GeV as shown in Fig. 2. In the same figure, we also plot

the LO and NLO results computed from the small-x formalism. We see that the curve with the exact kinematics,
which matches the collinear factorisation results, agrees with the data when p? & Q

s

, while it overpredicts the data
in the p? . Q

s

region. This is expected since the perturbative expansion starts to fail in the p? . Q

s

regime, where
the saturation formalism takes over and provides decent agreement with the data. More specifically, we can see that
the matching point is around p? ' 1GeV for ⌘ = 2.2, and it gets up to p? ' 1.5GeV for ⌘ = 3.2, due to decreasing
x

a

and increasing saturation momentum Q

s

. As shown in Fig. 3, it is then natural to see that the small-x calculation
always gives a good description of the data up to the end of the spectrum for ⌘ = 4, while the perturbative result
with the exact kinematics overpredicts the data until p? gets to around 2GeV. In addition, we can see that due to
the additional positive definite 2 ! 2 contributions from the q ! q and g ! g channels with the exact kinematics,
the perturbative curves with the exact kinematics are now always larger than the LO curves.

III. SUMMARY AND DISCUSSIONS

In conclusion, we have demonstrated that the saturation formalism expression for forward inclusive hadron pro-
duction in pA collisions in the large transverse momentum region can be matched to the corresponding collinear
factorization result. This matching can help to extend the NLO small-x calculation to the large transverse momen-
tum region. Following this idea, we have proposed the use of the exact kinematics to properly describe available data
at large transverse momenta, while the small transverse momentum region can still be accurately described by the
full NLO small-x calculation.
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0 data [2] at pseudorapidity ⌘ = 4 and the LO and NLO small-x calculations [19, 30],
as well as the large p? perturbative results with exact kinematics, at y = 4. As in Fig. 2, the edges of the bands show
µ

2 = 10GeV2 and 50GeV2.
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Appendix A: Derivation of Exact Kinematics

This appendix briefly outlines the derivation of the exact kinematic relations (9). We begin with energy-momentum
conservation in light-cone coordinates (p± = E ± p

z

) for the process shown in Fig. 1:

xp

+
p

= k

+ + q

+
x

a

p

�
a

= k

� + q

�
k

g? = k? + q? (A1)

Combining the definition of the NLO momentum fraction ⇠, namely ⇠ = k

+

xp

+
p
, with the + component of Eq. (A1) and

assuming the final-state quark is massless (k2 = 0) gives the result x = p?
z⇠

p
s

e

y.

The gluon carries a fraction 1 � ⇠ of the parent quark’s momentum, i.e. 1 � ⇠ = q

+

xp

+
p
. Since this is a final state

gluon, we take it to be on shell, q+q� = q

2
?. Combining these last two relations with the � component of Eq. (A1)

and the definition of x from the previous paragraph gives

x

a

p

�
a

= k?e
�y +

⇠q

2
?

(1� ⇠)k?
e

�y (A2)

and then using the transverse component of Eq. (A1) yields the definition of x
a

in Equation (9b).
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Matching between small x and collinear approximation with exact 
kinematics. 
The small x gives good prediction up to 
Collinear gives good description at large transverse momenta and 
overpredicts data  for low transverse momenta.

pT ⇠ Qs



Summary
• NLO calculation of the forward single inclusive production in p(d)-A 

implemented numerically.

• Using running coupling BK and DGLAP evolution for parton 
distribution functions and fragmentation functions.

• Comparisons with RHIC and calculations for LHC kinematics.

• Generally corrections are quite large, can be positive for low pT, and 
turn negative for high pT. Results in steeper distribution than LO.

• Scale dependence is smaller at NLO than at LO

• Negativity issue for large pT and not so large rapidities. NLO 
dominates the cross section.

• Small x formalism matches collinear approximation when exact 
kinematics is taken into account.
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Proton-nucleus collisions
Can view this process of scattering of a dilute projectile (proton) off a dense system (nucleus). 
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Figure 4.4: Kinematic coverage of the LHeC in the lnQ2 � ln 1/x plane for nuclear beams,
compared with existing nuclear DIS and Drell-Yan experiments.
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110

Proton-nucleus collisions important for several reasons:

Forward kinematics of the proton: proton structure evaluated at large x, nucleus parton 
structure evaluated at small x.

• Initial state for heavy ion collisions, benchmarking for AA collisions
• Nuclear structure, sensitivity to nuclear parton distributions
• At high energy sensitivity to  small x components of the nuclear wave functions

p A



LO formalism-midrapidity

Since we focus on forward rapidity we do not consider that case here...
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√
s = 200 GeV. Hadron p⊥ is limited to pT <∼ 7.5 (3.5)

GeV/c at y = 3.2 (4.0) at RHIC. Right: x1,2 coverage at y = 4, 6 at LHC energy.

III. PARTICLE PRODUCTION: kt-FACTORIZATION AND HYBRID FORMALISMS

In this section we summarize how particle production is calculated from the UGDs described above. It is useful
to first recall some elementary kinematics. For inclusive production of a single parton with transverse momentum
pt and rapidity y, without detection of the recoiling particle(s) in the opposite hemisphere, the 2 → 1 kinematics
is such that projectile and target fields are probed at light cone momenta x1,2 = (pt/

√
s) e±y. For the upcoming

p+Pb run at the LHC we shall assume a collision energy of
√
s = 5 TeV. Hence, the production of particles with

transverse momentum pt ! 20 GeV in the central rapidity region |y| ! 1 probe both the projectile and target wave
functions at small values of x below our initial condition at x0 = 0.01 5. In this case we shall use the so-called
kt-factorization approach. On the other hand, at more forward rapidities y " 2, towards the proton fragmentation
region, the momentum carried by the projectile parton grows large and so we shall resort to the hybrid formalism.
To outline the limits of applicability of our model let us first mention that in our terminology “small-x” refers to

x ≤ x0 = 0.01. This is the limit of applicability of the AAMQS fits to HERA data and coincides with parametric
estimates for the validity of the CGC approach and of coherent interactions. To estimate the range of pt where
our calculations might be valid we again resort to the AAMQS fits: they start exhibiting some tension with the
data when extended beyond Q ∼ 7 ÷ 10 GeV. This may indicate failure of the CGC approach based on rcBK
resummation for higher virtualities or transverse momenta. These limits of applicability are, of course, merely
indicative, since one does not expect a sharp boundary but rather a smooth transition. The kinematic window
accessible at RHIC and LHC, respectively, is illustrated in Fig. 2.

A. kt-factorization

According to the kt-factorization formalism [33], the number of gluons produced per unit rapidity at a transverse
position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (12)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive gluon production:

dσA+B→g

dy d2pt d2R
= Kk 2

CF

1

p2t

∫ pt d2kt
4

∫
d2b αs(Q)ϕP

(
|pt + kt|

2
, x1; b

)
ϕT

(
|pt − kt|

2
, x2;R− b

)
. (13)

5 A more precise estimate should consider the kinematic shift induced by the convolution of the primary produced parton with the
fragmentation function, which is indeed taken into account in our calculation later on.
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In the large-Nc limit the gluon dipole scattering amplitude required for the unintegrated gluon distributions can
be obtained from the quark dipole scattering amplitude that solves the rcBK equation:

NA(r, x,R) = 2NF (r, x,R)−N 2
F (r, x,R) (5)

where the subscript A simply refers to the fact that gluons belong to the adjoint representation of SU(3). Note
that this relation entails that the saturation momentum relevant for gluon scattering is larger than that for quark
scattering by about a factor of 2, at the initial rapidity x = x0.
The nuclear UGDs needed for particle production in the kt-factorization and hybrid frameworks are related to

the quark and gluon dipole scattering amplitudes via 2-dimensional Fourier transforms. In particular, the UGD
entering the kt-factorization formula is given by

ϕ(k, x,R) =
CF

αs(k) (2π)3

∫
d2r e−ik·r ∇2

r NA(r, x,R) . (6)

The function ϕ is dimensionless and corresponds to the number of gluons per unit transverse area and per transverse
momentum space cell.
Eq. (6) was written originally for fixed coupling. In order to be consistent with our treatment of the small-x

evolution, we have extended it by allowing the coupling in the denominator to run with the momentum scale.
As explained in [28], this modification turns out to be important to obtain a good description of the centrality
dependence of the charged hadron multiplicities measured in Au+Au and Pb+Pb collisions at RHIC and the
LHC respectively, which are otherwise too flat. In turn, the following UGDs in the fundamental and adjoint
representations are needed in the hybrid framework:

ÑF (A)(k, x,R) =

∫
d2r e−ik·r

[
1−NF (A)(r, x,R)

]
. (7)

Note that although the AAMQS approach assumes translational invariance –i.e. impact parameter independence–
of the dipole scattering amplitude over transverse distances of the order of the nucleon radius, RN , we have made
explicit such dependence in equations Eqs. (5-7) for consistency with the notation employed for nuclear UGDs
where the impact parameter dependence must be considered.
Let us now discuss our model for the nuclear UGD, starting from the one for a nucleon4. First, we assume

that the functional form of the quark dipole scattering amplitude off a nucleus at the initial saturation scale
x = x0 = 0.01 is the same as for the quark dipole scattering amplitude off a proton but with a shifted initial
saturation scale that depends on the local density at every point in the transverse plane, R. In other words, we
shall replace

Q2
s0,proton → Q2

s0,nucleus(R) (8)

in Eq. (3) in order to define the initial conditions for the evolution of the quark dipole scattering off a nucleus at
every transverse point in the nucleus. Then, the initial conditions given by Eqs. (3) and (8) are evolved locally using
the impact parameter independent rcBK evolution defined by Eqs. (1-2). This provides the full (r, x)-dependence
of the quark dipole-nucleus scattering amplitude at every point in the transverse plane of the nucleus. Finally,
Eqs. (6-7) are used to calculate their Fourier transform which provide the complete transverse momentum kt,
Bjorken-x and impact parameter (R) dependence of the nuclear UGDs.
To complete our discussion of the initial conditions we explain how we construct Q2

s0,nucleus(R). We treat the
transverse positions of nucleons as random variables following a two-dimensional projection of the Woods-Saxon
distribution, TA(R). Each configuration consist of a list of random coordinates ri, i = 1 . . . A, for the locations of
the different nucleons in the transverse plane; A denotes the atomic mass number of the nucleus. Multi-nucleon
correlations are neglected except for imposing a short-distance hard core repulsion which enforces a minimal
distance ≈ 0.4 fm between any two nucleons.
Every such configuration defines a different local density in the transverse plane of the nucleus. Obviously, the

smallest non-zero local density corresponds to the presence of a single nucleon. On the other hand, rare fluctuations
where a large number of nucleons is encountered at a given transverse position can occur. Such configurations
correspond to a high initial saturation scale, Q2

s0,nucleus(R). For a given configuration, the initial saturation

4 Strictly speaking, the AAMQS fits provide information only on the proton UGD or dipole scattering amplitude. We shall assume
that isospin effects are negligible for the gluon distributions at small-x and consider it equal to the one of a neutron.

For midrapidity production kT factorization more suitable

Symmetric treatment of target and projectile
Transverse momentum dependence also included in the projectile

Gluon production in midrapidity (no quarks in this formalism)
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y and pt are the rapidity and transverse momentum of the produced gluon, respectively, while x1,2 =
(pt/

√
sNN ) exp(±y) and CF = (N2

c − 1)/2Nc. As noted before, we assume that the local density in each nucleus
is homogeneous over transverse distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (13)
yields a geometric factor proportional to the transverse “area” of a nucleon which cancels with a similar factor
implicit in σs from Eq. (12), modulo subtleties in the definition of σs. Note, also, that (13) is symmetric under
projectile ↔ target exchange if, simultaneously, one lets y → −y.
Eq. (13) was written originally for fixed coupling. For consistency with our running coupling treatment of the

small-x evolution of the UGDs, we allow the coupling to run with the momentum scale. The argument of the
running coupling in Eq. (13) is chosen to be Q = max{|pt + kt|/2, |pt − kt|/2}. However, we found rather weak
sensitivity to the particular choice of scale because ϕ → 0 as kt → 0 due to the saturation of N (r) at large
dipole sizes r, see above. In principle one could improve on this educated guess by using the “running coupling
kt-factorization” formula derived recently in ref. [34]. Most importantly, the x-dependence of the dipole scattering
amplitude obtained by solving the rcBK equation encodes all the collision energy and rapidity dependence of the
gluon production formula Eq. (13).
The normalization factor Kk introduced in the kt-factorization formula (13) above lumps together higher-order

corrections, sea-quark contributions and, effectively, other dynamical effects not included in the CGC formulation.
It can be fixed approximately from the charged particle transverse momentum distribution in p+p collisions at
7 TeV, see below. Although its precise value depends on the UGD and on the fragmentation function, we typically
find Kk % 1.5− 3, which appears reasonable.
Eq. (13) is the starting point for all observables discussed below. In particular, the charged particle multiplicity

and the transverse energy can be obtained by integrating over the transverse plane and pt,

dNch

dy
=

2

3
κg

∫
d2R

∫
d2pt

dNA+B→g

dy d2pt d2R
, (14)

dEt

dy
=

∫
d2R

∫
d2pt pt

dNA+B→g

dy d2pt d2R
. (15)

Note that a low-pt cutoff is not required since the integration over kt in (13) extends only up to pt. The saturation
of the gluon distribution functions guarantees that the dominant scale in the transverse momentum integrations
is the saturation momentum. Similar to other CGC-based approaches, our Eq. (14) assumes that the total hadron
multiplicity is proportional to the initial gluon multiplicity through an (energy and centrality independent) gluon
multiplication factor κg

6. In order to reproduce both RHIC and LHC data on charged hadron multiplicities in
heavy-ion collisions we fix it to be κg % 5; small adjustments of this normalization factor may be required for p+p
and p+Pb collisions as discussed below. This could be due to the fact that we here assume local rcBK evolution
without explicit impact parameter dependence; further, due to our ignorance about how to hadronize the small-x
gluons (which also determines the y → η Jacobian given below) etc. The precise value of κg does of course depend
on the value of the K-factor which has been fixed independently since dN/dy only involves their product.
The upper limit in the integrals over the gluon transverse momentum in dNch/dy and dEt/dy has been taken as

pmax
t = 12 GeV; if the integrals are extended further then a slight adjustment of the normalization factors κg and

K may be required. In order to compare our results for initial gluon production to the final state distributions
of charged particles one has to translate the rapidity distributions into pseudo-rapidity distributions through the
y → η Jacobian

dNch

dη
=

cosh η
√
cosh2 η +m2/P 2

dNch

dy
,

dEt

dη
=

cosh η
√
cosh2 η +m2/P 2

dEt

dy
, (16)

with y = 1
2 ln (

√
cosh2 η +m2/P 2 + sinh η)/(

√
cosh2 η +m2/P 2 − sinh η). We assume that in this Jacobian

m = 350 MeV and P = 0.13 GeV + 0.32 GeV (
√
s/1 TeV) 0.115 which leads to a reasonably good description of

the pseudo-rapidity distribution of charged particles in p+p collisions at LHC energies, see below.
In turn, the single inclusive spectra at perturbatively large transverse momenta can be obtained by folding

Eq. (13) for gluon production with the corresponding gluon fragmentation function:

dNA+B→hX

dy d2pt
=

∫
d2R

∫
dz

z2
Dh

g

(
z =

pt
kt
, Q

)
dNA+B→g

dy d2qt d2R
. (17)

6 This factor does not enter Eq. (15) for the transverse energy because we assume that final-state gluon showering and hadronization
conserves the energy per unit rapidity.

Hadron production obtained through convolution with the fragmentation functions
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of different exponents which govern the growth of the saturation scales in this equation. We confirm the results of
[41], on the dependence of the scattering amplitude as a function of dipole size and demonstrate that it vanishes
for large dipole sizes. We also find the fast diffusion of the solution in impact parameter space and recover the
power tails. The saturation scale both for small and large dipoles is extracted, and the dependencies on the impact
parameter and rapidity are found. The results of the solutions to the equation in the leading logarithmic approximation
(LL) are compared with the modified version of the equation proposed in [43]. The modified version contains the
cutoffs in rapidity which originate from kinematical constraints. These cutoffs contain kinematical constraints in
only approximate way but we know from the analysis of forward BFKL in momentum space that these constraints
are known to reduce the speed of the evolution in a significant way [44], (for a related analysis on impact parameter
dependence in nonlinear equation and the energy conservation see [45]. The BK without impact parameter dependence
and with rapidity cutoffs was also analyzed in [35, 46]). We also include running coupling in our analysis and find
that the effect of the running coupling is quite different than in the case without the impact parameter. In this paper
we consider a prescription for the running coupling with the external dipole as the scale as well as the prescription
derived in [47]. The impact parameter dependent equation is extremely sensitive to the large dipole sizes and this is
the region where the running coupling is very large and needs to be regularized by some other mechanism.
In this analysis we did not attempt to regularize the large dipole size region in any way. It is at present totally unclear

how confinement effects should be consistently included in the dipole formalism. Of course, for any phenomenological
applications such cut should be included, perhaps similarly to what was done in [48]. As we were interested in general
properties of the evolution we did not attempt here to introduce additional cuts on large dipole sizes (via masses),
which would interfere with the specific dynamics of the evolution.
The paper is organized in the following way. In the next section, Sec. II we briefly present the BK equation and

discuss the modified version which includes the cutoffs in rapidity. In Sec. III we describe the numerical methods of
finding the solution. In Sec. IV we first show the results of the solution without the impact parameter and extract the
saturation scale for both the LL and the modified equation. In Sec. V we present the solutions with impact parameter.
We discuss the form of the amplitude as a function of the dipole size, extract the saturation scales (both for small and
large dipoles), and discuss the form of the impact parameter profile which emerges in the evolution. We present the
solutions both in the case of the LL and for the modified kernel. Using the representation in terms of the conformal
eigenfunctions we discuss the origins of different peaks in the amplitude as well as present estimates for the rapidity
dependence of the small and large dipole saturation scales and the expansion radius in impact parameter. We also
present the estimate of the cross section of the black disc radius and its dependence on the rapidity. In Sec. VI we
discuss the results with the running coupling, both for the case without and with impact parameter dependence, and
for two different prescriptions of the running coupling. Finally, in Sec. VII we state our conclusions.

II. BK KERNEL IN LO AND BEYOND

In the leading logarithmic approximation in ln 1/x, the nonlinear Balitsky-Kovchegov [15, 16, 18–22] evolution
equation derived in dipole picture [17] has the following form

∂Nx0x1

∂Y
= αs

∫

d2x2

2π

(x0 − x1)2

(x0 − x2)2(x1 − x2)2
[Nx0x2 +Nx1x2 −Nx0x1 −Nx0x2 Nx1x2 ] , (1)

where αs = αsNc/π is the strong coupling constant. Here, Nx0x1 ≡ N(x0,x1, Y ) is the dipole-nucleus scattering
amplitude, and x0,x1 are two-dimensional vectors of the transverse position of the dipole ends. Alternatively, one can
introduce the vector denoting the dipole size r01 = x0 − x1, and the impact parameter b01 = (x0 + x1)/2. Thus in
general, the amplitude depends on the four degrees of freedom in transverse space and rapidity, Y = ln(1/x), playing
the role of the evolution parameter. The transverse part of the LL kernel

dz

z

d2x2

2π

x2
01

x2
02x

2
12

,

is conformally (Möbius) invariant in 2-dimensions. Here, we introduced a more compact notation denoting xij ≡
xi − xj , xij = |xij | and z is the longitudinal momentum fraction so that rapidity is y = ln 1/z.

To obtain the solution of this equation, one has to specify an initial condition at Y = Y0: N
(0)
x0x1 = N (0)(x0,x1;Y =

Y0).
The amplitude Nx0x1 in (1) is given by the following correlator

Nx0x1 =
1

Nc
Tr

〈

1− U †(x0)U(x1)
〉

, (2)
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To obtain the solution of this equation, one has to specify an initial condition at Y = Y0: N
(0)
x0x1 = N (0)(x0,x1;Y =

Y0).
The amplitude Nx0x1 in (1) is given by the following correlator

Nx0x1 =
1

Nc
Tr

〈

1− U †(x0)U(x1)
〉

, (2)

Unintegrated gluon distribution

 Unintegrated gluon distribution function usually obtained from the Balitsky-Kovchegov equation.

LO BK equation:

↵̄s ⌘
Nc↵s

⇡

NLO BK equation available but difficult to solve even numerically.
Typically only running coupling corrections are taken into account for phenomenological applications.
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FIG. 13: Graphs of the natural logarithm of the black disc cross section versus rapidity at various fixed dipole sizes. The
dashed line represents the solutions obtained with Bessel kernel while the solid line represents the solutions with the LO kernel.

which is defined as ᾱs(rcut) = 0.3. As it is well known the BK equation without the impact parameter is not very
sensitive to the way the coupling is regularized. This is because the amplitude is saturated for all the large values of
the dipole size from the inverse of the saturation scale to infinity. In the case with impact parameter however, there
are contributions from the large dipole regime which spoil this self-regularizing behavior. In this case there is a large
sensitivity to the regularization scenario for the running coupling.
There are two different schemes for including the running coupling in the BK equation [65], [66]. In addition to

these two scenarios we will use also the so-called parent dipole scheme, where the coupling depends on the size of the
external dipole, that is x01. This scheme is convenient to use with the Bessel function kernel. We have also evaluated
the solutions using the prescription proposed in [65]

KBal(x01, x02) =
Ncαs(x2

01)

2π2

[

x2
01

x2
02x

2
12

+
1

x2
02

(

αs(x2
02)

αs(x2
12)

− 1

)

+
1

x2
12

(

αs(x2
12)

αs(x2
02)

− 1

)]

. (43)

Since it is not clear at the moment how to use this scheme with the Bessel function kernel we will use it only with the
LO kernel. The scheme dependence between two prescriptions [65], [66] originates from the choice of the subtraction
point. The scheme by [66] was shown to agree with the scheme [65] by the calculation of the appropriate subtraction
corrections. In this paper we have not evaluated the scheme [66], as we have found that in order to achieve the desired
accuracy for the solution with impact parameter within this scheme takes considerably longer time.
We first shall show the results with the running coupling without the impact parameter. The running of the coupling

has the effect of slowing down the evolution of the scattering amplitude as seen in Fig.14. The difference between the
LO and the modified kernel with running coupling is rather small. This can also be seen in Fig.15 which shows the
saturation scale of the two kernels with running coupling which are extremely close to each other. The dependence
on the saturation scale with respect to the rapidity is as in [54]

Q2
s = λ2 exp





(

2χ(γc)

bγc
Y

)
1
2

+
3

4
ξ1

(

χ
′′

(γc)

2bγcχ(γc)

)1/3

Y
1
6



 , (44)

where ξ1 = −2.338. Here the second term involving Y
1
6 is numerically non-negligible for the rapidities we consider.

In terms of numbers the coefficients above give Q2
s = λ2e3.6Y

1
2 −5.4Y

1
6 We have found that the LO saturation scale

with running coupling and the parent dipole size prescription is Q2
s = e3.4Y

1
2 −4.8Y

1
6 which is very similar to the one

given by the analytical value. The running coupling with prescription (43) has also been run and found to have a fit

of Q2
s = e3.4Y

1
2 −5.7Y

1
6 which is closer to the value given by (44).

In the scenario with impact parameter we find quite different behavior of the solution. As is seen in Fig. 16(a) the
evolution of the running coupling (with parent dipole scheme) is actually very fast in the small dipole region, and
it is much faster in the large dipole region. This is obvious since in the large dipole region the coupling is fixed at
αs = 0.3 which yields approximately three times as fast an evolution versus the case where αs = 0.1 is fixed. It can
be seen there are box effects beginning to manifest in the running coupling case due to the frozen coupling evolving
very quickly in the large dipole regime and reaching the box.
It can be seen in Fig. 17 that the dependence of the saturation scales on the rapidity is now again almost exponential.

In this case we can extract the exponents by fitting exponential forms in the rapidity as we did for the fixed coupling

K

LO(x01, x02) =
Nc↵s

2⇡

2

x

2
01

x

2
02x

2
12

Balitsky prescription. Note nonlinear 
dependence on the running coupling.

At LO coupling is fixed, BK kernel is invariant w.r.t. to transformations:

When one dipole size is much smaller than the rest the kernel can be approximated by the 
LO kernel with running coupling evaluated at this smallest dipole size.

xi ! xi + C
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Low x and saturation calculations: 
examples of higher orders of accuracy

• Linear BFKL evolution at  NLO.

• Impact factors for DIS at  NLO.

•  Jet vertices at  NLO. 

• Nonlinear BK evolution at NLO.

• Inclusive hadron production at  NLO.

Also resummed approaches (for the case of linear evolution) which aim to evaluate/
approximate higher orders.

Already large number of calculations at NLO accuracy and beyond (typically without saturation) have 
been applied to phenomenology: DIS inclusive, Mueller-Navelet jets, forward jets, electroproduction 

of vector mesons, angular decorrelation of jets...

•However, calculations that include saturation are usually done at lowest order of accuracy 
(with some improvements from the running coupling).
•So there is need to evaluate processes at NLO with saturation and evaluate the impact of 
higher orders onto the magnitude of the saturation scale.
•Need to do precision higher-order calculations which involve saturation.



NLO calculation
g ! g channel 12
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FIG. 5. The real diagrams for the next-to-leading order gluon production gA → g +X.

the sextupole, namely the correlation of six fundamental Wilson lines in a single trace, will start to appear in
the cross section. The small-x evolution equation of sextupoles [38] is different from the well-known BK equation
which is derived for dipoles. This is normal since the quadrupoles also follow a different version of small-x evolution
equation[30, 39]. The numerical study of the evolution for sextupoles is not yet available. Fortunately, the contribution
from sextupoles is suppressed by a factor 1

N2
c
as compared to other terms. In addition, in principle, the four-point

function S(4)(x⊥, b⊥, y⊥) can not be factorized into S(2)(x⊥, b⊥)S(2)(b⊥, y⊥) unless the large Nc limit is taken. By
taking the large Nc limit, not only can we simplify the calculation significantly, but also we can show that all the
relevant S-matrices are dipole amplitude S(2) which is universal at both leading order and NLO. From the universality
point of view, it seems that the large Nc limit is essential to the factorization. Therefore, in our following derivation,
we will take the large Nc limit right away, but we will comment on the property of the Nc corrections.
The real diagrams, as shown in Fig. 5, have been studied in Ref. [32]. Let us first analyze the S-matrices associated

with each graph in Fig. 5. For Fig. 5(a), before we integrate out the phase space of the unobserved gluon, we find that

the multiple scacttering gives
〈
fade

[
W (x⊥)W †(x′

⊥)
]db [

W (b⊥)W †(b′⊥)
]ec

fabc
〉

Y
, where x⊥ and x′

⊥ are the transverse

coordinates of the observed gluon in the amplitude and complex conjugate amplitude, respectively. Here, b⊥ and b′⊥ are
the coordinates of the unobserved gluon. By integrating over the phase space of the unobserved gluon, we identify b⊥ to
b′⊥ which allows us to greatly simplify the above expression and obtain Nc

(〈
TrU †(x⊥)U(x′

⊥)TrU
†(x′

⊥)U(x⊥)
〉
Y
− 1

)
.

The interaction between the unobserved gluon and the nucleus target is cancelled as expected. By taking the large
Nc limit, we can further drop the second term and factorize the results into NcS(2)(x⊥, x′

⊥)S
(2)(x′

⊥, x⊥), where a
factor of 1

N2
c
has been attached as the color average 4. Similarly, the Fig. 5(b) yields NcS(2)(v⊥, v′⊥)S

(2)(v′⊥, v⊥) with

v⊥ = ξx⊥ + (1− ξ)b⊥ and v′⊥ = ξx′
⊥ + (1− ξ)b⊥ 5. For Fig. 5(c), we find the scattering matrix is proportional to
〈
fadeW

db(x⊥)W
ec(b⊥)ffbcW

af (v′⊥)
〉
Y

=
〈
TrU †(v′⊥)U(x⊥)TrU

†(x⊥)U(b⊥)TrU
†(b⊥)U(v′⊥)

〉
Y

−
〈
TrU †(x⊥)U(v′⊥)U

†(b⊥)U(x⊥)U
†(v′⊥)U(b⊥)

〉
Y
, (54)

where we have used Eq. (8) and ifabcT c = [T a, T b] in the derivation. In addition, we have assumed that the expectation
value of the Wilson lines is real, which allows us to get, for example,

〈
TrU †(v′⊥)U(x⊥)TrU

†(x⊥)U(b⊥)TrU
†(b⊥)U(v′⊥)

〉
Y

=
〈
TrU †(x⊥)U(v′⊥)TrU

†(v′⊥)U(b⊥)TrU
†(b⊥)U(x⊥)

〉
Y
. (55)

4 Strictly speaking, this factor should be 1
N2

c−1
since the number of gluon color is N2

c − 1. In the large Nc limit, we just put it as N2
c .

5 The way that we choose to define v⊥ and v′
⊥

here is to put the rapidity divergence at ξ = 1 according to the convention that the
unobserved gluon’s longitudinal momentum becomes infinitely soft.
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(a) (b)

FIG. 6. Typical virtual gluon loop diagrams for the next-to-leading order gluon production gA → g +X.

The last term on the right hand side of Eq. (54) is the sextupole that we discussed earlier and it is suppressed by 1
N2

c

as compared to the first term. It is easy to see that the first term is proportional to N3
c since it has three color traces.

Therefore, we obtain that Fig. 5(c) gives NcS(2)(x⊥, v′⊥)S
(2)(v′⊥, b⊥)S

(2)(b⊥, x⊥) in the large Nc limit. Similarly,
following the same procedure, we find that Fig. 5(d) yields NcS(2)(v⊥, x′

⊥)S
(2)(x′

⊥, b⊥)S
(2)(b⊥, v⊥).

Now we can follow Ref. [32] and write down the cross section of producing a hadron with p⊥ at rapidity y from a
gluon as follows

dσpA→hX
real

d2p⊥dy
= αsNc

∫ 1

τ

dz

z2
Dh/g(z)

∫ 1

τ/z
dξxg(x)

∫
d2x⊥

(2π)2
d2x′

⊥
(2π)2

d2b⊥
(2π)2

×e−ik⊥·(x⊥−x′

⊥
)
∑

λαβ

ψλ∗
ggαβ(u

′
⊥)ψ

λ
ggαβ(u⊥)

×
[
S(2)(x⊥, x

′
⊥)S

(2)(x′
⊥, x⊥) + S(2)(v⊥, v

′
⊥)S

(2)(v′⊥, v⊥)

−S(2)(x⊥, v
′
⊥)S

(2)(v′⊥, b⊥)S
(2)(b⊥, x⊥)

−S(2)(v⊥, x
′
⊥)S

(2)(x′
⊥, b⊥)S

(2)(b⊥, v⊥)
]
, (56)

where the g → gg splitting kernel is found to be 6

∑

λαβ

ψλ∗
ggαβ(ξ, u

′
⊥)ψ

λ
ggαβ(ξ, u⊥) = 4(2π)2

[
ξ

1− ξ
+

1− ξ

ξ
+ ξ(1 − ξ)

]
u′
⊥ · u⊥

u′2
⊥u

2
⊥

, (57)

with u⊥ = x⊥−b⊥ and u′
⊥ = x′

⊥−b⊥. In addition, we find that the ξ dependence of the splitting function is symmetric

under the interchange ξ ↔ (1 − ξ), and can be simply written as [1−ξ(1−ξ)]2

ξ(1−ξ) . It is clear that the real contributions
contain the rapidity divergence at ξ → 1 limit.
Similar to the quark channel, the virtual gluon diagrams as shown in Fig. 6 can be calculated accordingly, and we

obtain

−
2

2
αsNc

∫ 1

τ

dz

z2
Dh/g(z)xpg(xp)

∫ 1

0
dξ

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥

(2π)2
(58)

×e−ik⊥·(v⊥−v′

⊥
)
∑

λαβ

ψλ∗
ggαβ(p

+, ξ, u⊥)ψ
λ
ggαβ(p

+, ξ, u⊥) (59)

×
[
S(2)(v⊥, v

′
⊥)S

(2)(v′⊥, v⊥)− S(2)(b⊥, x⊥)S
(2)(x⊥, v

′
⊥)S

(2)(v′⊥, b⊥)
]
, (60)

where the factor of 2 comes from the fact that the mirror diagrams give the identical contributions when the virtual
loop on the right side of the cut, while the factor of 1

2 is the symmetry factor arising from two identical gluons in the
closed gluon loop. The virtual contribution contains rapidity divergence when ξ approaches 0 and 1. This is easy to
understand since the virtual gluon loop contribution is symmetric under the interchange ξ ↔ (1− ξ). Assuming that
S(2)(x⊥, x′

⊥) = S(2)(x′
⊥, x⊥) and use x⊥ = v⊥+(1−ξ)u⊥ and b⊥ = v⊥−ξu⊥, one can easily show that the last line of is

6 Here we have included the factor of 1
p+

, which is in the splitting kernel, into the cross section.
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(a) (b)

FIG. 7. Typical virtual quark loop diagrams for the next-to-leading order gluon production gA → g +X.

symmetric under the interchange ξ ↔ (1−ξ). Therefore, we can rewrite the splitting function
[

ξ
1−ξ + 1−ξ

ξ + ξ(1− ξ)
]

as 2
[

ξ
1−ξ + 1

2ξ(1− ξ)
]
for the virtual part. Now the virtual contribution only contains rapidity singularity at ξ = 1.

Following the procedure that we have illustrated above for the quark channel, we remove the rapidity divergence
terms from the real and virtual contributions by doing the following subtractions

F̃(k⊥) = F̃ (0)(k⊥)−
αsNc

π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥) (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

×
[
S(2)(x⊥, y⊥)S

(2)(y⊥, x⊥)− S(2)(x⊥, y⊥)S
(2)(y⊥, b⊥)S

(2)(b⊥, x⊥)
]
, (61)

where F̃ (0)(k⊥) is the bare dipole gluon distribution in the adjoint representation which appears in the leading order
cross section as in Eq. (5) and it is divergent. F̃(k⊥) is the renormalized dipole gluon in the adjoint representation
distribution and it is assumed to be finite. To arrive at Eq. (61), we have taken the large Nc limit which allows us to
neglect the sextupole and constant term which are suppressed by 1

N2
c
. the full subtraction should include those terms

as well.

Now we are ready to show that Eq. (61) is equivalent to the adjoint representation of the BK equation. The
non-linear small-x evolution equation for a color dipole in some arbitrary representation R can be found in Eq. (5.18)
in Ref. [40]. This equation reads

∂

∂Y

〈
trRV

†
x⊥

Vy⊥

〉
Y
= −

αs

π2

∫
d2z⊥ (x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
[
CR

〈
trRV

†
x⊥

Vy⊥

〉
Y
−
〈
trRV

†
z⊥ t

aVz⊥V
†
x⊥

taVy⊥

〉
Y

]
, (62)

where V is the Wilson line in the R-representation. If one takes the fundamental representation, one can easily recover
the BK equation as shown in Eq. (23). If one sets V = W and uses the adjoint representation for the color matrices
tabc = −ifabc, one can use Eq. (8) to convert everything into the fundamental representation. It is straightforward to
find CR = Nc and

〈
trAW

†
x⊥

Wy⊥

〉
Y
=

〈
TrU †(x⊥)U(y⊥)TrU

†(y⊥)U(x⊥)
〉
Y
− 1

〈
trAW

†
z⊥t

aWz⊥W
†
x⊥

taWy⊥

〉
Y
=

〈
TrU †(x⊥)U(y⊥)TrU

†(z⊥)U(x⊥)TrU
†(y⊥)U(z⊥)

〉
Y

−
〈
TrU †(x⊥)U(y⊥)U

†(z⊥)U(x⊥)U
†(y⊥)U(z⊥)

〉
Y
, (63)

where we have also assumed all the correlation functions on the right hand side of the above equation are real. By
putting above expressions into Eq. (62), we can obtain the adjoint representation of the BK equation which is in
complete agreement with Eq. (61) if one also includes the large Nc corrections in Eq. (61). This version of the BK
equation actually contains the sextupole correlation term and constant term which coincide with Eq. (54) and the
discussion above. One can see that the cancellation of the rapidity divergence is complete, even if one includes all the
large Nc corrections. After the subtraction of the rapidity divergence, the splitting functions become regulated and
we can replace 1

1−ξ by 1
(1−ξ)+

.

Furthermore, before we take care of the collinear singularities, we should also compute the quark loop virtual

Real diagrams Typical virtual  diagrams

Procedure similar to quark-quark channel.
Additional complications arise due to the presence of the sextupole and quadrupole. 
Sextupole contribution is suppressed in large color limit.
Quadrupole can be written as a product of dipoles in the large color limit.
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where the first term comes from the real diagrams, the term which is proportional to 11
6 δ(1−ξ) comes from the virtual

gluon loop diagrams and the term which is suppressed by 1/Nc is the quark loop contribution. Now we are ready to
remove the collinear singularities by redefining the gluon distribution and the gluon fragmentation function as follows

g(x, µ) = g(0)(x) −
1

ε̂

αs(µ)

2π

∫ 1

x

dξ

ξ
NcPgg(ξ)g

(
x

ξ

)
, (70)

Dh/g(z, µ) = D(0)h/g(z)−
1

ε̂

αs(µ)

2π

∫ 1

z

dξ

ξ
NcPgg(ξ)Dh/g

(
z

ξ

)
, (71)

which is in agreement with the DGLAP equation for the gluon channel.
Now we are ready to assemble all the rest of the finite terms into the hard factors. Let us take the finite terms

left in the virtual contribution as an example. Using Eq. (31) to perform the l⊥ integration, the finite terms are
proportional to

∫
d2q1⊥d

2q2⊥K(q1⊥, q2⊥, q2⊥ − k⊥)

[
ln

k2⊥
µ2

+ ln
(l⊥ − ξk⊥ + q2⊥ − q1⊥)2

k2⊥

]
. (72)

The evaluation of the first term is trivial since it is independent of ξ, qi⊥. Using Eqs. (34, 66), the second term yields 7

∫
d2x⊥d2b⊥d2y⊥

(2π)4
S(2)(x⊥, b⊥)S

(2)(b⊥, y⊥)S
(2)(y⊥, x⊥)e

−ik⊥·(x⊥−y⊥)

×4π

[

δ(2)(b⊥ − x⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥
−

e−iξ′k⊥·(b⊥−x⊥)

(b⊥ − x⊥)2

]

. (73)

Summarizing the above calculations, for the gluon channel contribution: gA → h/g +X , we find that the factor-
ization formula can be explicitly written as

d3σp+A→h/g+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxg(x, µ)Dh/g(z, µ)

×

{∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥)

[
H(0)

2gg +
αs

2π
H(1)

2gg

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)

αs

2π
H(1)

2qq̄

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)S

(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg

}

. (74)

The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2gg = e−ik⊥·r⊥δ(1− ξ) (75)

where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. It is straightforward to show that H(1)
2gg and H(1)

6gg read as follows

H(1)
2gg = NcPgg(ξ) ln

c20
r2⊥µ

2

(
e−ik⊥·r⊥ +

1

ξ2
e−i

k⊥
ξ ·r⊥

)

−
(
11

3
−

4NfTR

3Nc

)
Ncδ(1− ξ)e−ik⊥·r⊥ ln

c20
r2⊥k

2
⊥

, (76)

H(1)
2qq̄ = 8πNfTRe

−ik⊥·(y⊥−b⊥)δ(1− ξ)

∫ 1

0
dξ′

[
ξ′2 + (1 − ξ′)2

]

×

[
e−iξ′k⊥·(x⊥−y⊥)

(x⊥ − y⊥)2
− δ(2)(x⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]

, (77)

7 The expression in Eq. (73) looks slightly different from the final results as shown in Eq. (78). Since the S-matrices are symmetrical
among all the transverse coordinates which are all integrated over in the end, one can exchange the definition of variables x⊥ ↔ y⊥ and
reverse the orientation of all the coordinates in Eq. (73). This allows us to show that these two expressions are equivalent.

Final expression for the 
gluon-gluon channel 
(large Nc limit taken 

here):



NLO calculation

7

1. The rapidity divergence

Now we are ready to evaluate NLO contributions by the following procedures. First, we remove the rapidity
divergence terms from the real and virtual contributions by doing the following subtractions

F(k⊥) = F (0)(k⊥)−
αsNc

2π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

×
(x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)
Y (x⊥, y⊥)− S(4)

Y (x⊥, b⊥, y⊥)
]
, (21)

where F (0)(k⊥) is the bare dipole gluon distribution which appears in the leading order cross section as in Eq. (5)
and it is divergent. F(k⊥) is the renormalized dipole gluon distribution and it is assumed to be finite. We can always
decompose the dipole splitting kernel as

(x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2
=

1

(x⊥ − b⊥)2
+

1

(y⊥ − b⊥)2
−

2(x⊥ − b⊥) · (y⊥ − b⊥)

(x⊥ − b⊥)2(y⊥ − b⊥)2
, (22)

where the first two terms are removed from the virtual contribution while the last term is removed from the real
diagrams. This procedure is similar to that for the collinear factorization, where we modify the bare leading order
parton distributions to the finite parton distribution with the higher order radiation. Using Eqs. (6, 21), we can see

that the differential change of the dipole amplitude S(2)
Y (x⊥, y⊥) yields the BK equation

∂

∂Y
S(2)
Y (x⊥, y⊥) = −

αsNc

2π2

∫
d2b⊥ (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)
Y (x⊥, y⊥)− S(4)

Y (x⊥, b⊥, y⊥)
]
. (23)

It is important to note that if we conduct the leading order classical calculation, we will not get any energy dependence,
namely the Y dependence, in the scattering amplitudes. It is the BK evolution equation as shown above which gives
the energy dependence to those scattering amplitudes. To derive the BK equation from Eqs. (6, 21), one needs to reset
the upper limit of the dξ integral in Eq. (21) to 1 − e−Y , with Y being the total rapidity gap between the projectile
proton and the target nucleus. Here Y → ∞ as the center of mass energy s → ∞. By doing so, we introduce the

rapidity Y dependence, namely the energy dependence, of the two-point function S(2)
Y (x⊥, y⊥) from which the BK

equation can be understood and therefore derived. Another way to derive this equation is to slightly move away from
the light cone as in the derivation of the Balitsky equation[23]. The rapidity divergence is an artifact that we put
both the projectile and targets on the light cone in the high energy limit. By slightly tilting away from the light cone,
we can modify the ξ integral and obtain

∫ 1
0

dξ
1−ξ+e−Y . In addition, when one integrates over the transverse momentum

k⊥ as in Eq. (21), one finds that the rapidity divergence disappears as expected [33].
The physical interpretation of the rapidity divergence subtraction is quite interesting. Although the soft gluon is

emitted from the projectile proton which is moving on the forward light cone with the rapidity close to +∞, it is
easy to see that the rapidity of this soft gluon goes to −∞ when ξ → 1. As a matter of fact, this soft gluon can be
regarded as collinear to the target nucleus which is moving on the backward light cone with the rapidity close to −∞.
Therefore, it is quite natural to renormalize this soft gluon into the gluon distribution function of the target nucleus
through the BK evolution equation.
After the subtraction of the rapidity divergence, both of the real and virtual contributions become regulated in

terms of the dξ integral which leads to the change of the splitting function into 1+ξ2

(1−ξ)+
. Here we introduce the following

property of the plus-function

∫ 1

a
dξ (f(ξ))+ g(ξ) =

∫ 1

a
dξf(ξ)[g(ξ) − g(1)]− g(1)

∫ a

0
dξf(ξ), (24)

where g(ξ) can be any non-singular functions, while f(ξ) is singular at ξ = 1 and (f(ξ))+ is regulated.

2. The collinear divergence

The second step is to use the dimensional regularization (D = 4 − 2ε) and follow the MS subtraction scheme, in
order to compute and remove the collinear divergence from both real and virtual contributions. For convenience, we

Subtraction of rapidity divergence into 
the gluon distribution of the nucleus.

BK evolution at LL in ln1/x

7

1. The rapidity divergence

Now we are ready to evaluate NLO contributions by the following procedures. First, we remove the rapidity
divergence terms from the real and virtual contributions by doing the following subtractions

F(k⊥) = F (0)(k⊥)−
αsNc

2π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

×
(x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)
Y (x⊥, y⊥)− S(4)

Y (x⊥, b⊥, y⊥)
]
, (21)

where F (0)(k⊥) is the bare dipole gluon distribution which appears in the leading order cross section as in Eq. (5)
and it is divergent. F(k⊥) is the renormalized dipole gluon distribution and it is assumed to be finite. We can always
decompose the dipole splitting kernel as

(x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2
=

1

(x⊥ − b⊥)2
+

1

(y⊥ − b⊥)2
−

2(x⊥ − b⊥) · (y⊥ − b⊥)

(x⊥ − b⊥)2(y⊥ − b⊥)2
, (22)

where the first two terms are removed from the virtual contribution while the last term is removed from the real
diagrams. This procedure is similar to that for the collinear factorization, where we modify the bare leading order
parton distributions to the finite parton distribution with the higher order radiation. Using Eqs. (6, 21), we can see

that the differential change of the dipole amplitude S(2)
Y (x⊥, y⊥) yields the BK equation

∂

∂Y
S(2)
Y (x⊥, y⊥) = −

αsNc

2π2

∫
d2b⊥ (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)
Y (x⊥, y⊥)− S(4)

Y (x⊥, b⊥, y⊥)
]
. (23)

It is important to note that if we conduct the leading order classical calculation, we will not get any energy dependence,
namely the Y dependence, in the scattering amplitudes. It is the BK evolution equation as shown above which gives
the energy dependence to those scattering amplitudes. To derive the BK equation from Eqs. (6, 21), one needs to reset
the upper limit of the dξ integral in Eq. (21) to 1 − e−Y , with Y being the total rapidity gap between the projectile
proton and the target nucleus. Here Y → ∞ as the center of mass energy s → ∞. By doing so, we introduce the

rapidity Y dependence, namely the energy dependence, of the two-point function S(2)
Y (x⊥, y⊥) from which the BK

equation can be understood and therefore derived. Another way to derive this equation is to slightly move away from
the light cone as in the derivation of the Balitsky equation[23]. The rapidity divergence is an artifact that we put
both the projectile and targets on the light cone in the high energy limit. By slightly tilting away from the light cone,
we can modify the ξ integral and obtain

∫ 1
0

dξ
1−ξ+e−Y . In addition, when one integrates over the transverse momentum

k⊥ as in Eq. (21), one finds that the rapidity divergence disappears as expected [33].
The physical interpretation of the rapidity divergence subtraction is quite interesting. Although the soft gluon is

emitted from the projectile proton which is moving on the forward light cone with the rapidity close to +∞, it is
easy to see that the rapidity of this soft gluon goes to −∞ when ξ → 1. As a matter of fact, this soft gluon can be
regarded as collinear to the target nucleus which is moving on the backward light cone with the rapidity close to −∞.
Therefore, it is quite natural to renormalize this soft gluon into the gluon distribution function of the target nucleus
through the BK evolution equation.
After the subtraction of the rapidity divergence, both of the real and virtual contributions become regulated in

terms of the dξ integral which leads to the change of the splitting function into 1+ξ2

(1−ξ)+
. Here we introduce the following

property of the plus-function

∫ 1

a
dξ (f(ξ))+ g(ξ) =

∫ 1

a
dξf(ξ)[g(ξ) − g(1)]− g(1)

∫ a

0
dξf(ξ), (24)

where g(ξ) can be any non-singular functions, while f(ξ) is singular at ξ = 1 and (f(ξ))+ is regulated.

2. The collinear divergence

The second step is to use the dimensional regularization (D = 4 − 2ε) and follow the MS subtraction scheme, in
order to compute and remove the collinear divergence from both real and virtual contributions. For convenience, we
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(a) (b)

(d)(c)

FIG. 3. The real diagrams for the next-to-leading order quark production qA → q +X.

For a right-moving massless quark, with initial longitudinal momentum p+ and no transverse momentum, the splitting
wave function in transverse coordinate space is given by

ψλ
αβ(p

+, k+1 , r⊥) = 2πi

√
2

k+1






r⊥·ε(1)
⊥

r2
⊥

(δα−δβ− + ξδα+δβ+), λ = 1,

r⊥·ε(2)
⊥

r2
⊥

(δα+δβ+ + ξδα−δβ−), λ = 2.
, (14)

where λ is the gluon polarization, α,β are helicities for the incoming and outgoing quarks, and 1 − ξ = k+
1

p+ is
the momentum fraction of the incoming quark carried by the gluon. Since the Wilson lines in the fundamental
representation and the adjoint representation resum the multiple interactions of quarks and gluons with the nucleus
target, respectively, one can easily see that these four terms in the last two lines of the Eq. (11) correspond to those

four graphs in Fig. 3. The S(6)
Y term which corresponds to Fig. 3 (a) and resums all the multiple interactions between

the quark-gluon pair and the nucleus target, represents the case where interactions take place after the splitting both

in the amplitude and in the conjugate amplitude. The S(2)
Y term which comes from Fig. 3 (b), resums the interactions

before the splitting only and the S(3)
Y terms represent the interference terms as shown in Fig. 3 (c) and (d).

There are two contributions for inclusive hadron production at the next-to-leading order, namely, quark productions
associated with Dh/q which is indicated by the cross in Fig. 3 (while the gluon is integrated) and gluon productions
associated with the fragmentation function Dh/g (while the quark is integrated).
Let us study the former case by integrating over the phase space of the final state gluon (k+1 , k1⊥). We can cast

the real contribution into
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xq(x)
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Rapidity divergence:

5

(a) (b)

(d)(c)

FIG. 3. The real diagrams for the next-to-leading order quark production qA → q +X.
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where λ is the gluon polarization, α,β are helicities for the incoming and outgoing quarks, and 1 − ξ = k+
1

p+ is
the momentum fraction of the incoming quark carried by the gluon. Since the Wilson lines in the fundamental
representation and the adjoint representation resum the multiple interactions of quarks and gluons with the nucleus
target, respectively, one can easily see that these four terms in the last two lines of the Eq. (11) correspond to those
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Y term which corresponds to Fig. 3 (a) and resums all the multiple interactions between

the quark-gluon pair and the nucleus target, represents the case where interactions take place after the splitting both

in the amplitude and in the conjugate amplitude. The S(2)
Y term which comes from Fig. 3 (b), resums the interactions

before the splitting only and the S(3)
Y terms represent the interference terms as shown in Fig. 3 (c) and (d).

There are two contributions for inclusive hadron production at the next-to-leading order, namely, quark productions
associated with Dh/q which is indicated by the cross in Fig. 3 (while the gluon is integrated) and gluon productions
associated with the fragmentation function Dh/g (while the quark is integrated).
Let us study the former case by integrating over the phase space of the final state gluon (k+1 , k1⊥). We can cast

the real contribution into
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∫ 1
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+
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c − 1)/2Nc, and I and J are defined as
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[
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[
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,
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⇠ ! 1
k+
1

p+

Momentum fraction of the incoming 
quark carried by the gluon

Quark moving with very high positive rapidity.
Longitudinally soft gluon moving with very high negative rapidity.
Include that gluon into the nuclear density.

Physical interpretation:
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To derive the above expressions, Eq. (30) is used repeatedly. It is also useful to notice that

∫
d2k1⊥e

−ik1⊥·r̄⊥ ln
(k1⊥ − ξ′k⊥)2

k2⊥
= 4π

[
δ(r̄⊥)

∫
d2r′⊥
r′2⊥

eik⊥·r′
⊥ −

1

r̄2⊥
e−iξ′k⊥·r̄⊥

]
, (34)

which can lead us to the final factorized formula.
By combining the collinear singularities from both real and virtual diagrams, we find the coefficient of the collinear

singularities becomes Pqq(ξ) which is defined as

Pqq(ξ) =

(
1 + ξ2

1− ξ

)

+

=
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ). (35)

Now we are ready to remove the collinear singularities by redefining the quark distribution and the quark fragmentation
function as follows

q(x, µ) = q(0)(x)−
1

ε̂

αs(µ)

2π

∫ 1

x

dξ

ξ
CFPqq(ξ)q

(
x

ξ

)
, (36)

Dh/q(z, µ) = D(0)
h/q(z)−

1

ε̂

αs(µ)

2π

∫ 1

z

dξ

ξ
CFPqq(ξ)Dh/q

(
z

ξ

)
, (37)

which is in agreement with the well-known DGLAP equation for the quark channel. We will be able to recover the
full DGLAP equation once we finish the calculation on all channels. Using Eq. (5) and combine it with the NLO real
and virtual contributions, it is almost trivial to show Eq. (36). It is a little bit less trivial to derive Eq. (37). By
combining the relevant terms in the real and virtual contributions, we obtain a term which reads

−
1

ε̂

αs(µ)

2π

∫ 1

τ

dz

z2
Dh/q(z)

∫ 1

τ/z
dξCFPqq(ξ)xq(x)

1

ξ2
F
(
k⊥
ξ

)
. (38)

By changing variable z′ = zξ, we can rewrite the above term as

−
1

ε̂

αs(µ)

2π

∫ 1

τ

dz′

z′2
xq(x)F

(p⊥
z′

)∫ 1

z′

dξ

ξ
CFPqq(ξ)Dh/q

(
z′

ξ

)
, (39)

which allows us to arrive at Eq. (37) easily by combining this term with Eq. (5).
One might worry about the term which is proportional to 1

2πF (k⊥)
(
CF − Nc

2

)
ln(1− ξ)2 since it is logarithmically

divergent when ξ → 1. Let us show that this singularity will also cancel between the real and virtual contributions as
follows

[∫ 1

τ/z
dξ

1 + ξ2

(1− ξ)+
xq(x) ln(1− ξ)2 − xpq(xp)

∫ 1

0
dξ

1 + ξ2

(1− ξ)+
ln(1− ξ)2

]

=

∫ 1

τ/z
dξ

(
(1 + ξ2) ln(1 − ξ)2

1− ξ

)

+

xq(x), (40)

where the first term on the left hand side of the above equation comes from the real diagrams while the second term
comes from the virtual graphs. Here we have used Eq. (24) again.

3. Finite contributions

Now we have removed all the collinear singularities by renormalizing the quark distribution and the quark fragmen-
tation function. The rest of the contribution should be finite. The last procedure is to assemble all the finite terms
into a factorized formula. For the quark channel contribution: qA → h +X , we find that the factorization formula
can be explicitly written as

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

∫
d2x⊥d2y⊥

(2π)2

{
S(2)
Y (x⊥, y⊥)

[
H(0)

2qq +
αs

2π
H(1)

2qq

]

+

∫
d2b⊥
(2π)2

S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq

}
, (41)

Collinear divergence absorbed into 
renormalization of parton distribution and 

fragmentation functions
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which is in agreement with the well-known DGLAP equation for the quark channel. We will be able to recover the
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and virtual contributions, it is almost trivial to show Eq. (36). It is a little bit less trivial to derive Eq. (37). By
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which allows us to arrive at Eq. (37) easily by combining this term with Eq. (5).
One might worry about the term which is proportional to 1

2πF (k⊥)
(
CF − Nc

2

)
ln(1− ξ)2 since it is logarithmically
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follows
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where the first term on the left hand side of the above equation comes from the real diagrams while the second term
comes from the virtual graphs. Here we have used Eq. (24) again.

3. Finite contributions

Now we have removed all the collinear singularities by renormalizing the quark distribution and the quark fragmen-
tation function. The rest of the contribution should be finite. The last procedure is to assemble all the finite terms
into a factorized formula. For the quark channel contribution: qA → h +X , we find that the factorization formula
can be explicitly written as
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=
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Collinear divergence:
Dimensional regularization used and MSbar scheme to remove collinear divergences associated 

with the gluon collinear either to initial or final state quark.

Coefficient of the collinear divergence 
is equal to the splitting function

6

(a) (b)

FIG. 4. Typical virtual diagrams for the next-to-leading order quark production qA → q +X.

and S(4)
Y (x⊥, b⊥, y⊥) = 1

N2
c
〈Tr[U(x⊥)U †(b⊥)]Tr[U(b⊥)U †(y⊥)]〉Y . Several steps are necessary in deriving the above

result from Eq. (11). By integrating over the gluon momentum, we identify x⊥ to x′
⊥ which simplifies S(6)

Y to
S(2)(b⊥, b′⊥). This is expected since we know the multiple interactions between the gluon and the nucleus target
should cancel if the gluon is not observed. Furthermore, using the Fierz identity, one can write

S(3)
Y (b⊥, x⊥, v

′
⊥) =

Nc

2CF

[
S(4)
Y (b⊥, x⊥, v

′
⊥)−

1

N2
c
S(2)
Y (b⊥, v

′
⊥)

]
, (17)

which only involves the Wilson lines in the fundamental representation. Then, the final steps, which include the Fourier
transforms, as well as the convolutions of the quark distribution and fragmentation function, are quite straightforward.
Before we proceed to the calculations of the virtual diagrams, we comment on the result shown in Eq. (15). The

major obstacles of evaluating the integrals in Eq. (15) are the divergences. There are three types of singularities
lying in that equation, namely, the rapidity divergence which occurs at ξ = 1 when the rapidity of the radiated
gluon becomes −∞, and the collinear singularities which correspond to the cases that the final state gluon is either
collinear to the initial quark or final state quark. We shall expect that the virtual diagrams cancel some part of the
divergences, while the uncancelled divergences shall be absorbed into the renormalization of the quark distribution

and fragmentation functions as well as the target dipole gluon distribution (S(2)
Y (x⊥, y⊥)). After these subtractions,

the remainder contributions should be finite and give us the NLO correction to the single inclusive hadron production
cross section.
The evaluation of the virtual graphs as shown in Fig. 4 are quite simple in the dipole picture. Their contributions

are proportional to

−2αsCF

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥

(2π)2
e−ik⊥·(v⊥−v′

⊥
)
∑

λαβ

ψλ∗
αβ(u⊥)ψ

λ
αβ(u⊥)

×
[
S(2)
Y (v⊥, v

′
⊥)− S(3)

Y (b⊥, x⊥, v
′
⊥)
]
, (18)

where the factor of 2 takes care of the fact that the mirror diagrams of Fig. 4 give the identical contributions when
the virtual loop is on the right side of the cut. It is straightforward to see that these two terms in the last line of
Eq. (18) correspond to the Fig. 4 (a) and (b), respectively. This eventually leads to

−
αs

2π2

∫
dz

z2
Dh/q(z)xpq(xp)

∫ 1

0
dξ

1 + ξ2

1− ξ

×
{
CF

∫
d2q⊥I(q⊥, k⊥) +

Nc

2

∫
d2q⊥d

2kg1⊥J (q⊥, k⊥, kg1⊥)

}
, (19)

where explicitly one writes

I(q⊥, k⊥) = F(k⊥)

[
q⊥ − k⊥

(q⊥ − k⊥)2
−

q⊥ − ξk⊥
(q⊥ − ξk⊥)2

]2
,

J (q⊥, k⊥, kg1⊥) =
[
F(k⊥)δ

(2) (kg1⊥ − k⊥)− G(k⊥, kg1⊥)
] 2(q⊥ − ξk⊥) · (q⊥ − kg1⊥)

(q⊥ − ξk⊥)2(q⊥ − kg1⊥)2
. (20)

It is easy to see that the virtual contributions indeed contain three types of singularities as we mentioned before. There
are two important features that we wish to emphasize here. First, the rapidity divergence term is only proportional
to Nc/2 since I vanishes at ξ → 1 limit. This agrees with the BK equation since there is no 1/N2

c corrections to
the leading order BK equation. Second, when one integrates over the quark transverse momentum k⊥, the rapidity
divergence disappears due to the complete cancellation between the real and virtual contributions.

Need to take into account virtual 
diagrams as well

Now we have the scale dependence inside pdfs and ffs
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respectively. The rapidity divergence at one-loop order is factorized into the BK evolution in either fundamental
representation or adjoint representation for the dipole gluon distribution of the nucleus. The hard coefficients are
calculated up to one-loop order without taking the large Nc limit for the quark q → q channel. For some technical
reasons, especially avoiding the sextupoles, as we have explained during the derivation, we take the large Nc limit
for other channels. In principle, using these hard coefficients together with the NLO parton distributions and frag-
mentation functions as well as the NLO small-x evolution equation[42, 43] for dipole amplitudes, one can obtain the
complete NLO cross section of the inclusive hadron production in pA collisions in the large Nc limit. The corrections
to this NLO order cross section are either of order α2

s or suppressed by 1
N2

c
. As to the running coupling effects [44] in

our hybrid factorization formalism, we have no αs dependence at the leading order (αs has been absorbed into the def-
inition of the saturation momentum), and one power of αs at the NLO, thus we find that the one-loop approximation
for the running coupling should be sufficient.
We have shown that the differential cross section for inclusive hadron productions in pA collisions can be written

in a factorization form in the coordinate space. The factorization scale dependence in the hard coefficients reflects
the DGLAP evolutions for the quark distributions and fragmentation functions. It is interesting to note that similar
coordinate dependence (associated with r⊥) has also been found in the transverse momentum resummation formalism
derived for the Drell-Yan lepton pair production in Ref. [45]. On the other hand, the hard coefficients in our case do
not contain double logarithms, therefore there is no need for the Sudakov resummation for forward inclusive hadron
production in pA collisions.
Adding all the channels together in the large Nc limit gives

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξ [xq(x, µ), xg(x, µ)]

[
Sqq Sqg

Sgq Sgg

] [
Dh/q (z, µ)
Dh/g (z, µ)

]
, (91)

with factorization scale chosen as µ = c0/r⊥ and

Sqq =

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)e

−ik⊥·r⊥δ(1 − ξ)

[
1−

αs

2π
3CF ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq , (92)

Sqg =
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)H(1)

4gq , (93)

Sgq =
αs

2π

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)

[
H(1,1)

2qg + S(2)
Y (x⊥, y⊥)H(1,2)

2qg

]

+
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)H(1)

4qg , (94)

Sgg =

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥)e

−ik⊥·r⊥δ(1− ξ)

[
1−

αs

2π
Nc

(
11

3
−

4NfTR

3Nc

)
ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)

αs

2π
H(1)

2qq̄

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)S

(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg , (95)

where all the hard factors are defined in previous section. Since now the factorization scale µ depends on r⊥, the parton
distributions and fragmentations function should change accordingly when we integrate over all the coordinates. In
other words, the above expression should be understood as if the parton distributions and fragmentation functions
are written inside those coordinate integrals.
In addition, we have also demonstrated that all the hard factors can be calculated easily in the well-known MV and

GBW model and shown that our results agree with the collinear factorization results in the dilute limit.
In the above calculations, we focus on the hadron production in the forward pA collisions, where we can safely neglect

the transverse momentum effects from the incoming parton distributions of the nucleon. The explicit calculations at
one-loop order in the above also support this factorization, i.e., the collinear divergence associated with the incoming
parton distribution from the nucleon does not contain the transverse momentum dependence. The situation may
change if we have both small-x effects from nucleon and nucleus, such as in the mid-rapidity in pA collisions at the
LHC, when the transverse momentum effects from the gluon distribution of nucleon become important. It is in this
region that a naive k⊥-factorization has been derived [2, 4] and has been widely used in the literature. It will be
interesting to extend our calculations to this kinematics too. We leave this for a future publication.
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respectively. The rapidity divergence at one-loop order is factorized into the BK evolution in either fundamental
representation or adjoint representation for the dipole gluon distribution of the nucleus. The hard coefficients are
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reasons, especially avoiding the sextupoles, as we have explained during the derivation, we take the large Nc limit
for other channels. In principle, using these hard coefficients together with the NLO parton distributions and frag-
mentation functions as well as the NLO small-x evolution equation[42, 43] for dipole amplitudes, one can obtain the
complete NLO cross section of the inclusive hadron production in pA collisions in the large Nc limit. The corrections
to this NLO order cross section are either of order α2

s or suppressed by 1
N2

c
. As to the running coupling effects [44] in

our hybrid factorization formalism, we have no αs dependence at the leading order (αs has been absorbed into the def-
inition of the saturation momentum), and one power of αs at the NLO, thus we find that the one-loop approximation
for the running coupling should be sufficient.
We have shown that the differential cross section for inclusive hadron productions in pA collisions can be written

in a factorization form in the coordinate space. The factorization scale dependence in the hard coefficients reflects
the DGLAP evolutions for the quark distributions and fragmentation functions. It is interesting to note that similar
coordinate dependence (associated with r⊥) has also been found in the transverse momentum resummation formalism
derived for the Drell-Yan lepton pair production in Ref. [45]. On the other hand, the hard coefficients in our case do
not contain double logarithms, therefore there is no need for the Sudakov resummation for forward inclusive hadron
production in pA collisions.
Adding all the channels together in the large Nc limit gives

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξ [xq(x, µ), xg(x, µ)]

[
Sqq Sqg

Sgq Sgg

] [
Dh/q (z, µ)
Dh/g (z, µ)

]
, (91)

with factorization scale chosen as µ = c0/r⊥ and

Sqq =

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)e

−ik⊥·r⊥δ(1 − ξ)

[
1−

αs

2π
3CF ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq , (92)

Sqg =
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)H(1)

4gq , (93)

Sgq =
αs

2π

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)

[
H(1,1)

2qg + S(2)
Y (x⊥, y⊥)H(1,2)

2qg

]

+
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)
Y (x⊥, b⊥, y⊥)H(1)

4qg , (94)

Sgg =

∫
d2x⊥d2y⊥

(2π)2
S(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥)e

−ik⊥·r⊥δ(1− ξ)

[
1−

αs

2π
Nc

(
11

3
−

4NfTR

3Nc

)
ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)

αs

2π
H(1)

2qq̄

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)S

(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg , (95)

where all the hard factors are defined in previous section. Since now the factorization scale µ depends on r⊥, the parton
distributions and fragmentations function should change accordingly when we integrate over all the coordinates. In
other words, the above expression should be understood as if the parton distributions and fragmentation functions
are written inside those coordinate integrals.
In addition, we have also demonstrated that all the hard factors can be calculated easily in the well-known MV and

GBW model and shown that our results agree with the collinear factorization results in the dilute limit.
In the above calculations, we focus on the hadron production in the forward pA collisions, where we can safely neglect

the transverse momentum effects from the incoming parton distributions of the nucleon. The explicit calculations at
one-loop order in the above also support this factorization, i.e., the collinear divergence associated with the incoming
parton distribution from the nucleon does not contain the transverse momentum dependence. The situation may
change if we have both small-x effects from nucleon and nucleus, such as in the mid-rapidity in pA collisions at the
LHC, when the transverse momentum effects from the gluon distribution of nucleon become important. It is in this
region that a naive k⊥-factorization has been derived [2, 4] and has been widely used in the literature. It will be
interesting to extend our calculations to this kinematics too. We leave this for a future publication.

evolving according to the DGLAP equation

Factorizable structure in coordinate space

evolving according to the small x evolution 
equation

xq(x, µ)
xg(x, µ) Dh/q(z, µ) Dh/g(z, µ)

S(2,4)
Y

Chirilli, Xiao, Yuan

Relevant for the forward rapidity kinematics, no transverse momentum dependence on the proton side.
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but where the nuclear geometry is treated in a mean field approach, hence neglecting fluctuations. Resummation
of small-x quantum fluctuations removes the enhancement at intermediate kT .
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FIG. 8: Comparison of the rcBK-MC results obtained with only the elastic term of the hybrid formalism, Eq. (19), to
the RHIC forward data on single inclusive charged hadron (BRAHMS data [51]) and neutral pion yields in p+p (left) and
d+Au collisions (right). Solid lines correspond to the γ = 1.119 i.c., dashed-dotted to also γ = 1.119 i.c but using the
prescription in Eq. (10) for the initial saturation scale. Dotted lines correspond to MV i.c.

In Fig. 8 we compare our results for single inclusive charged hadron (BRAHMS data [51]) and neutral pion
(STAR data [52]) distributions measured in p+p and d+Au collisions at RHIC. In this figure we include only the
elastic component of the hybrid formalism. In what follows we adopt the DSS-NLO fragmentation functions as the
default ones for all the calculations performed within the hybrid formalism. Our results show a good agreement
with data. However, the figure also illustrates that RHIC forward data does not constrain well the initial conditions
for the evolution of nuclear wave functions: both the UGD MV and g1119 sets (using either the natural, Eq. (9),
or the modified, Eq. (10), ansatz for the initial saturation scale at every point in the transverse plane) yield a
comparably good description of data. This is due to the fact that transverse momentum distributions in the
forward region do not probe the kT ! Qs tails of the UGDs.
Similar to previous phenomenological works, we found that no K-factors are needed to describe data at rapidities

η = 2.2 and 3. However, STAR data at more forward rapidities can only be well described if a K-factor ≈ 0.4
is introduced. This may be an indication that large-x phenomena non included in the CGC may be relevant in
the region close to the kinematic limit of phase space. Note, however, that the value of the K-factor depends
significantly both on the UGD and on the FF.
In Fig. 9 we show the comparison to the same RHIC forward data, now also including the inelastic term in

the hybrid formalism. We explore both fixed αs = 0.1 as well as one-loop running coupling at the scale Q. We
observe that the effect of this additional term can be very large, especially at large transverse momentum. We
note that, despite the fact that the coupling decreases with increasing transverse momentum, the running coupling
prescription causes a larger effect than the fixed coupling one.
We observe that the inelastic term exhibits a harder pT -dependence than the elastic contribution, and at some

transverse momentum it overwhelms the elastic contribution. The crossing point depends on the particular choice
of UGD. The effects from the inelastic corrections are stronger for the steeper g1119 initial conditions than for
the MV ones over the entire range of transverse momentum shown in Fig. 9. Also, the importance of the inelastic
term depends on the collision system or, equivalently, on the target saturation scale: it is stronger for p+p than
for d+Au collisions. For p+p collisions in particular it appears that the present formalism does not provide a
stable result as the inelastic correction overwhelms the leading elastic contribution already at moderate values
of transverse momentum. This not a completely unexpected result since, parametrically, the inelastic term is
proportional to ln(pt/Qst), with Qst the target saturation scale, while the elastic term scales as ln(pt/ΛQCD) (see
discussion in [31]). Given the importance and magnitude of the inelastic term, our findings call for a complete
phenomenological analysis of the full NLO corrections.
We now proceed to p+Pb collisions at LHC energy,

√
s = 5 TeV. In Figs. 10 and 11 we show our results for the

single inclusive charged hadrons yields in p+p and minimum bias p+Pb collisions and the nuclear modification
factor Rp+Pb for minimum bias collisions respectively. We compare also to Rp+Pb from collinear factorization
using EPS09 nPDFs [53, 54] as well as to results from the “IP-sat” model and from an independent rcBK imple-

Inclusive charged hadron in pp and dA collisions

Successful description of the data within LO and using rcBK evolution.
Different initial conditions are allowed.
K-factor of K=0.4 for STAR data is needed. Very forward rapidities, end of kinematic phase space? 

Albacete,Dumitru,Fujii,Nara
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Unintegrated gluon density from rcBK with MV initial conditions. 
The slope of NLO matches better the data than LO.
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