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Beam Dynamics in Synchrotrons I: transverse  

Just to give a kind of definition ...  
 
 

A synchrotron is a type of circular accelerator that needs: 
 

A bending field  
 to keep the particles on a closed orbit 

A mechanism to lock this B-field to the particle energy 
 ! constant orbit 

 

Focusing fields that follow the energy gain to keep the particles together 
 ! well defined beam size 

 

A RF structure to accelerate the particles  
 ! energy gain per turn 

 

A mechanism to synchronise the rf frequency to  
 the particle timing 
 ! phase focusing / synchrotron principle 

ADA, Frascati 
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LHC, 27km, 1232 dipole magnets, 7 TeV 



 Lorentz force 
!
F = q*(

!
E + !v ×

!
B)

„  ... in the end and after all it should be a kind of circular machine“ 
 ! need transverse deflecting force  

typical velocity in high energy machines: 83*10≈ ≈ m
sv c

 Introduction and Basic Ideas 
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 Example: 

 equivalent el field 

 technical limit for a el. field 

Unlike to a cyclotron, we localise & optimise the magnets at the location of the  
beam … to keep the machine “small”. 
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circular  coordinate system 

condition for circular orbit:   

Lorentz force 

centrifugal force 

The ideal circular orbit 
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The arrangement and strength of the dipole magnets define the maximum particle  
momentum that can be carried by the synchrotron. 

LHC: 7000 GeV  Proton storage ring 
     dipole magnets  N = 1232 
                                 l = 15 m 
                                q = +1 e 

B dl ≈ N l B = 2π p / e∫

B ≈ 2π 7000 109eV

1232 15m 3 108 m
s

e
= 8.3Tesla



field map of a storage ring dipole magnet 
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The Magnetic Guide Field 

Normalise magnetic field to momentum: convenient units:  
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Dipole Magnets: 
 

define the ideal orbit via their homogeneous 
field, which is  created by two flat pole shoes 



Focusing Properties – Transverse Beam Optics 

general solution: free harmonic oszillation 

Classical Mechanics: 
pendulum 

there is a restoring force, proportional  
to the elongation x:  
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F = m * d
2x
dt 2

= −k * x

( ) *cos( )x t A tω ϕ= +Ansatz 

Storage Ring: we need a Lorentz force that rises as a function 
of the distance to the design orbit 

( ) * * ( )F x q v B x=

required:     focusing forces to keep trajectories in vicinity of the ideal orbit  
 

    linear increasing Lorentz force 
 

    linear increasing magnetic field  

 Quadrupole Magnets: 
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Normalised quadrupole field: 

Field in a quadrupole 
 
 

Normalised gradient of a quadrupole 
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LHC sc quadrupole 

what about the vertical plane: 
    ... Maxwell   y
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 The Equation of Motion: 

 only terms linear in x, y taken into account    
      dipole fields    
      quadrupole fields 

ygBxgB xy ==

Separate Function Machines:  Split the magnets 
and optimise  them according to their job  
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Equation for the vertical motion: 
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no dipoles … in general …  

quadrupole field changes sign 
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 The Equation of Motion: 

Equation for the horizontal motion 
 of a particle inside a storage ring magnet: ● 
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A magnet in a synchrotron that acts as hor. focusing lens, has at the same time, 
a defocusing effect in the vertical plane. 
Et vice versa. 



Differential Equation of harmonic oscillator   …  with spring  constant K 
 

Ansatz: 

general solution:  linear combination of two independent solutions  

 Solution of Trajectory Equations 

Define …  hor. plane: 
 

            … vert. Plane: 
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Hor. Focusing Quadrupole  K > 0: 
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For convenience expressed in matrix formalism: 
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determine a1 , a2  by boundary conditions: 
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hor. defocusing quadrupole:  

drift space:   
                       K = 0  
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!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

0=−ʹ′ʹ′ xKx

Ansatz: )sinh()cosh()( 21 sasasx ωω ⋅+⋅=

Remember from school: 
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focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

*.....* * * *= etotal QF D QD B nd DM M M M M M

x(s) 

s 

court. K. Wille 

                          0 
 
typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 
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in each accelerator element the particle trajectory corresponds to the movement of a  
harmonic oscillator „ 



Tune: number of oscillations per turn 
 
            64.31 

 59.32 
 
 

Relevant for beam stability:  
                               non integer part 

 Orbit & Tune: 

LHC revolution frequency:  11.3 kHz kHz5.33.11*31.0 =



Question: what will happen, if the particle performs a second turn ?  

x 

... or a third one or ... 1010 turns 

0 

s 



Astronomer Hill:   
 

                differential equation for motions with periodic focusing properties 
 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: ( ) ( ) ( ) 0ʹ′ʹ′ − =x s k s x s

   restoring force  ≠ const,                                     we expect a kind of quasi harmonic       
   k(s) = depending on the position s                    oscillation:  amplitude & phase will depend    
   k(s+L) = k(s),   periodic function                      on the position s in the ring. 



 The Beta Function 

General solution of Hill´s equation: 

( ) ( ) cos( ( ) )= ⋅ +x s s sε β ψ φ

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

ε, Φ = integration constants determined by initial conditions 

Inserting (i) into the equation of motion …  
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Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. 

For one complete revolution: number of oscillations per turn „Tune“ 
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The Beta Function 

Amplitude of a particle trajectory:  

Maximum size of a particle amplitude    

)()(ˆ ssx βε=

β determines the beam size  
( ... the envelope of all particle  
trajectories at a given position  
“s” in the storage ring. 
  
It reflects the periodicity of the 
magnet structure. 
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x(s) = ε * β(s) *cos(ψ(s) +ϕ)



 Beam Emittance and Phase Space Ellipse 

general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 
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Beam Emittance and Phase Space Ellipse 
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Liouville: in reasonable storage rings  
area in phase space is constant. 
 
               A = π*ε=const  

)()()()()(2)()( 22 sxssxsxssxs ʹ′+ʹ′+= βαγε

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  



Emittance of the Particle Ensemble: 

Z X, Y,( )



Phase Space Ellipse 

{ }( ) ( ) cos ( )= +x s s sε β ψ φparticel trajectory: 

max. Amplitude: εβ=)(ˆ sx x´ at that position …? 

… put         into )(ˆ sx
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* The optical functions determine the shape  
and orientation of the phase space ellipse.  
 
A high β-function means a large beam size  
and a small beam divergence. 
   … et vice versa !!! 
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Emittance of the Particle Ensemble: 

single particle trajectories, N ≈ 10 11  per bunch 
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Particle Distribution: 
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particle at distance 1 σ from centre  
                                ↔ 68.3 % of all beam particles 
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aperture requirements:  r 0 =  12 * σ 

  LHC:  

mmmm 3.0180*10*5* 10 === −βεσ
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β =180m
ε = 5*10−10mrad



13.) Errors in Field and Gradient:  
  Dispersion: trajectories for Δp / p ≠ 0  
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remember: x ≈ mm , ρ ≈ m … !  develop for small x 
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consider only linear fields,  and change independent variable: t → s  
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Forces acting on the particle 

… but now take a small momentum error into account !!! 
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Radial acceleration  
 
Is counter vailed by the Lorenz force 



Dispersion: 

develop for small momentum error 2
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Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. 
! inhomogeneous differential equation. 
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Dispersion function D(s)  
 
        * is that special orbit, an ideal particle would have  for Δp/p = 1  
 
        * the orbit of any particle is the sum of the well known xβ  and the dispersion 
 
        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
 

Dispersion: 
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Closed orbit for Δp/p > 0 
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 Example: homogenous dipole field 

Matrix formalism: 
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e.g. matrix for a quadrupole lens: 
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Amplitude of Orbit oscillation: 
  
 contribution due to dispersion 

  ≈ beam size 
  

Dispersion: 



16.) Chromaticity:  
           A Quadrupole Error for Δp/p ≠ 0 

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  
 

   

dipole magnet 
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          to low energy 
          ideal energy 
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definition of chromaticity: 
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Chromaticity: Q' 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 
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Problem: chromaticity is generated by the lattice itself !! 
 
Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
   ! it is determined by the focusing strength k of all quadrupoles 

Example: LHC 
                     Q' = 250  

      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 
                  

à Some particles get very close to  
    resonances and are lost  
    in other words: the tune is not a point 
                          it is a pancake 

… what is wrong about Chromaticity: 

Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 
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Sextupole Magnets:  

1.) sort the particles according to their momentum ( ) ( )D
px s D s
p
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2.) apply a magnetic field that rises quadratically with x (sextupole field)  
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linear rising  
„gradient“:  
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corrected chromaticity: 

normalised quadrupole strength:  
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Correction of Chromaticity 



Resume: 
 
The geometry and the maximum momentum of the particles 
is defined by the dipole strength 
 
Strong focusing quadrupole lenses lead to a  
transverse oscillation of the particles 
 
Focusing properties of a magnet 
 
 

Foc. & defoc. lenses have to be combined  
to lead to an overall focusing scheme  
in both planes. 
 
The β-function defines an envelope enclosing the single particle  
trajectories and together with the emittance it defines the beam size 
 
Number of oscillations per turn (the tune) depends on the  
overall focusing fields in the ring 
 
The beam emittance is a intrinsic beam property and describes 
the quality of the particle distribution. It corresponds to the area   
of an ellipse in x, x‘ phase space and is constant (for a given energy). 
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Resume: 
 

Dispersion: effect of a momentum error (spread) on 
 the particle orbit 
 
Chromaticity: ... on the focusing properties (tune)   
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