Beam Dynamics in Synchrotrons I: transverse

Bernhard Holzer CERN

Just to give a kind of definition ...

A synchrotron is a type of circular accelerator that needs:

A bending field to keep the particles on a closed orbit A mechanism to lock this B-field to the particle energy ! **constant orbit**

Focusing fields that follow the energy gain to keep the particles together ! **well defined beam size**

A RF structure to accelerate the particles ! **energy gain per turn**

A mechanism to synchronise the rf frequency to the particle timing ! **phase focusing / synchrotron principle**

ADA, Frascati

Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine" ! *need transverse deflecting force*

Lorentz force
$$
\vec{F} = q^* (x + \vec{v} \times \vec{B})
$$

typical velocity in high energy machines: $v \approx c \approx 3*10^8 m/s$

Example:
\n
$$
B = 1 T \rightarrow F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{V_S}{m^2}
$$
\n
$$
F = q * 300 \frac{MV}{m}
$$
\nequivalent el field
$$
E
$$
\ntechnical limit for a el. field $E \le 1 \frac{MV}{m}$

Unlike to a cyclotron, we localise & optimise the magnets at the location of the beam … to keep the machine "small".

The arrangement and strength of the dipole magnets define the maximum particle momentum that can be carried by the synchrotron.

LHC: 7000 GeV Proton storage ring dipole magnets N = 1232 $l = 15 m$ $q = +l e$ $\int B dl \approx N l B = 2\pi p / e$ $B \approx$ 2π 7000 $10^9 eV$ 1232 15 *m* 3 10⁸ $\frac{m}{2}$ *s e* = 8.3*Tesla*

The Magnetic Guide Field

Normalise magnetic field to momentum: convenient units:

$$
\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}
$$

Example LHC:

$$
B = 8.3 T
$$
\n
$$
p = 7000 \frac{GeV}{c}
$$
\n
$$
\rho = 2.53 km
$$

field map of a storage ring dipole magnet

$$
B = [T] = \left[\frac{V\mathbf{s}}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]
$$

Dipole Magnets:

define the ideal orbit via their homogeneous field, which is created by two flat pole shoes

Focusing Properties – Transverse Beam Optics

Classical Mechanics: pendulum

there is a restoring force, proportional to the elongation x:

$$
F = m \cdot \frac{d^2x}{dt^2} = -k \cdot x
$$

Ansatz $x(t) = A^* \cos(\omega t + \varphi)$

general solution: free harmonic oszillation

Storage Ring: we need a Lorentz force that rises as a function of the distance to the design orbit

$$
F(x) = q^* v^* B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field $B_y = g x$ $B_x = g y$

Normalised quadrupole field:

Field in a quadrupole $B_y = g x$ $B_x = g y$

Normalised gradient of a quadrupole p e $k = \frac{g}{g}$ $=\frac{8}{p}$

LHC sc quadrupole

what about the vertical plane: ∂x ∂y ∂y

$$
\Rightarrow \qquad \frac{\partial \boldsymbol{B}_y}{\partial x} = \frac{\partial \boldsymbol{B}_x}{\partial y}
$$

 The Equation of Motion:

$$
\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + ...
$$

 only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines: Split the magnets and optimise them according to their job

The Equation of Motion:

Equation for the vertical motion:

x

 $\frac{h}{p}$

A magnet in a synchrotron that acts as hor. focusing lens, has at the same time, a defocusing effect in the vertical plane. Et vice versa.

Solution of Trajectory Equations

Define ... hor. plane:
$$
K = 1/\rho^2 - k
$$

... *vert. Plane:* $K = k$

$$
x'' + K x = 0
$$

Differential Equation of harmonic oscillator … with spring constant K

$$
Ansatz: \qquad x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s)
$$

general solution: linear combination of two independent solutions

$$
x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s)
$$

$$
x''(s) = -a_1 \omega^2 \cos(\omega s) - a_2 \omega^2 \sin(\omega s) = -\omega^2 x(s) \longrightarrow \omega = \sqrt{K}
$$

general solution:

$$
x(s) = a_1 \cos(\sqrt{K}s) + a_2 \sin(\sqrt{K}s)
$$

determine a_1 , a_2 by boundary conditions:

$$
s = 0 \qquad \longrightarrow \qquad \begin{cases} \n x(0) = x_0 , & a_1 = x_0 \\ \n x'(0) = x'_0 , & a_2 = \frac{x'_0}{\sqrt{K}} \n\end{cases}
$$

Hor. Focusing Quadrupole K > 0:

$$
x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)
$$

$$
x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)
$$

For convenience expressed in matrix formalism:

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}
$$

$$
M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}
$$

Remember from school:

$$
f(s) = \cosh(s)
$$
, $f'(s) = \sinh(s)$

Ansatz: $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$

$$
M_{defoc} = \begin{pmatrix} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}l \\ \sqrt{|K|}\sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{pmatrix}
$$

drift space:

 $K = 0$

$$
M_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent μ , \ldots *the particle motion in x & y is uncoupled* "

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ..

 Orbit & Tune:

Tune: number of oscillations per turn

 64.31 59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz $0.31*11.3 = 3.5kHz$

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 1010 turns

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill'*s equation*"

Example: particle motion with periodic coefficient

equation of motion:

$$
x''(s) - k(s)x(s) = 0
$$

 $k(s+L) = k(s)$, periodic function **on the position s in the ring.**

restoring force \neq *const,* $\qquad \qquad \qquad \qquad \qquad$ we expect a kind of quasi harmonic $k(s) =$ depending on the position s $\left\{\right.$ oscillation: amplitude & phase will depend

The Beta Function

General solution of Hill´s equation:

 $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$ *(i)*

β(s) periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles *ε, Φ = integration constants determined by initial conditions*

 $\beta(s+L) = \beta(s)$

Inserting (i) into the equation of motion …

$$
\psi(s) = \int_0^s \frac{ds}{\beta(s)}
$$

 $\Psi(s) =$, phase advance " of the oscillation between point , 0 " and , s " in the lattice. *For one complete revolution: number of oscillations per turn "Tune"*

$$
Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}
$$

The Beta Function

Amplitude of a particle trajectory:

$$
x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \sim
$$

β determines the beam size (... the envelope of all particle trajectories at a given position "s" in the storage ring.

It reflects the periodicity of the magnet structure.

Beam Emittance and Phase Space Ellipse

general solution of
\nHill equation\n
$$
x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi)
$$
\n
$$
(2) \quad x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\}
$$

 from (1) we get

$$
\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}
$$

$$
\alpha(s) = \frac{-1}{2} \beta'(s)
$$

$$
\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}
$$

Insert into (2) and solve for ε

$$
\boldsymbol{\varepsilon} = \boldsymbol{\gamma}(s) \; \boldsymbol{x}^2(s) + 2 \boldsymbol{\alpha}(s) \boldsymbol{x}(s) \boldsymbol{x}'(s) + \boldsymbol{\beta}(s) \; \boldsymbol{x}'^2(s)
$$

** ε is a constant of the motion ... it is independent of "s* " ** parametric representation of an ellipse in the x x*' *space * shape and orientation of ellipse are given by α, β, γ*

Beam Emittance and Phase Space Ellipse

$$
\boldsymbol{\varepsilon} = \boldsymbol{\gamma}(s) \; \boldsymbol{x}^2(s) + 2 \boldsymbol{\alpha}(s) \boldsymbol{x}(s) \boldsymbol{x}'(s) + \boldsymbol{\beta}(s) \; \boldsymbol{x}'^2(s)
$$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!

Emittance of the Particle Ensemble:

Phase Space Ellipse

particel trajectory: $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}$

max. Amplitude: $\hat{x}(s) = \sqrt{\epsilon \beta}$ \longrightarrow *x' at that position ...?*

 $...$ put $\hat{x}(s)$ into

$$
\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)
$$

and solve for x´

$$
\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2
$$

 $x'=-\alpha\cdot\sqrt{\varepsilon/\beta}$

- ** The optical functions determine the shape and orientation of the phase space ellipse.*
- *A high β-function means a large beam size and a small beam divergence. … et vice versa !!! **

Emittance of the Particle Ensemble:

 $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s) \cdot \cos(\Psi(s) + \phi)}$ $\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

Gauß

Particle Distribution:

2 2 2 1 $f(x) = \frac{W}{\sqrt{2\pi}\sigma_x} \cdot e^{-2\sigma_x}$ *x x e* $N \cdot e$ $f(x) = \frac{1}{\sqrt{2}}$ $\cdot e^{-2\sigma}$ πσ $\rho(x) = \frac{N \cdot e}{\sqrt{2}} \cdot e^{-x}$

particle at distance 1 σ from centre ↔ 68.3 % of all beam particles

single particle trajectories, N ≈ 10 11 per bunch

LHC:
$$
\beta = 180 m
$$

$$
\varepsilon = 5 * 10^{-10} m \, rad
$$

 $\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5 * 10^{-10} m * 180 m} = 0.3 mm$

aperture requirements: $r_{0} = 12 * \sigma$

13.) Errors in Field and Gradient: Dispersion: trajectories for $\Delta p / p \neq 0$

Forces acting on the particle

Radial acceleration

 $a_r = \frac{d^2(\rho + x)}{h^2}$ *dt* $rac{1}{2}$ - (ρ + *x*) $\left(\frac{d\theta}{dt}\right)$! \ $\left(\frac{d\theta}{\mu}\right)$ \overline{y} $\overline{}$ 2

Is counter vailed by the Lorenz force

$$
F = m \frac{d^2}{dt^2} (x + \rho) - \frac{mv^2}{x + \rho} = e B_y v
$$

remember: $x \approx m m$, $\rho \approx m ...$ \rightarrow *develop for small x*

$$
m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1-\frac{x}{\rho}) = eB_yv
$$

consider only linear fields, and change independent variable: $t \rightarrow s$

$$
\boldsymbol{B}_{y} = \boldsymbol{B}_{0} + x \frac{\partial \boldsymbol{B}_{y}}{\partial x}
$$

$$
x'' - \frac{1}{\rho} (1 - \frac{x}{\rho}) = \frac{e}{mv} + \frac{e}{mv}
$$

… but now take a small momentum error into account !!!

p=*p*^{*0*+*Δp*}

Dispersion:

develop for small momentum error

$$
\Delta p \ll p_0 \Rightarrow \frac{1}{p_0 + \Delta p} \approx \frac{1}{p_0} - \frac{\Delta p}{p_0^2}
$$

$$
x'' - \frac{1}{\rho} + \frac{x}{\rho^2} \approx \frac{e}{\rho_0} - \frac{\Delta p}{\rho_0^2} eB_0 + \frac{xeg}{\rho_0} - xeg \frac{\Delta p}{\rho_0^2}
$$

$$
-\frac{1}{\rho} \qquad k * x \qquad \approx 0
$$

$$
x'' + \frac{x}{\rho^2} \approx \frac{\Delta p}{p_0} * \frac{(-eB_0)}{p_0} + k^* x = \frac{\Delta p}{p_0} * \frac{1}{\rho} + k^* x
$$

$$
x'' + \frac{x}{\rho^2} - kx = \frac{\Delta p}{p_0} \frac{1}{\rho} \qquad \longrightarrow \qquad x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p_0} \frac{1}{\rho}
$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. ! *inhomogeneous differential equation.*

Dispersion:

$$
x'' + x\left(\frac{1}{\rho^2} - k\right) = \frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:

$$
x(s) = x_h(s) + x_i(s)
$$

Normalise with respect to Δp/p:

$$
D(s) = \frac{x_i(s)}{\Delta p}
$$

$$
x''_h(s) + K(s) \cdot x_h(s) = 0
$$

$$
x''_i(s) + K(s) \cdot x_i(s) = \frac{1}{\rho} \cdot \frac{\Delta p}{p}
$$

Dispersion function D(s)

** is that special orbit, an ideal particle would have for* $\Delta p/p = 1$

** the orbit of any particle is the sum of the well known x_β and the dispersion*

 ** as D(s) is just another orbit it will be subject to the focusing properties of the lattice*

Dispersion:

Example: homogenous dipole field

16.) Chromaticity: A Quadrupole Error for Δp/p ≠ 0

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Chromaticity: Q'

$$
k = \frac{g}{p/}
$$
 $p = p_0 + \Delta p$

in case of a momentum spread:

$$
k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k
$$

$$
\Delta k = -\frac{\Delta p}{p_0} k_0
$$

… which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds
$$

definition of chromaticity:

$$
\Delta Q = Q' \frac{\Delta p}{p} \quad ; \quad Q' = -\frac{1}{4\pi} \oint k(s) \beta(s) ds
$$

… what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed

! *it is determined by the focusing strength k of all quadrupoles*

Tune signal for a nearly uncompensated cromaticity $(Q' \propto 20)$

Example: LHC $Q' = 250$ $\Delta p/p = +/- 0.2 *10^{-3}$ $\Delta Q = 0.256...0.36$

à*Some particles get very close to resonances and are lost in other words: the tune is not a point it is a pancake*

Correction of Chromaticity

1.) sort the particles according to their momentum

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$
B_x = \tilde{g}xz
$$

\n
$$
B_z = \frac{1}{2}\tilde{g}(x^2 - z^2)
$$

\n
$$
B_z = \frac{1}{2}\tilde{g}(x^2 - z^2)
$$

\n
$$
B_z = \frac{\partial B_x}{\partial z} = \tilde{g}x
$$

\n*linear rising*
\n*gamma*
\n*spradient*
\n*inear rising*

Sextupole Magnets:

normalised quadrupole strength:

p

 $= D(s) \frac{\Delta}{a}$

$$
k_{\text{sext}} = \frac{\tilde{g}x}{p/e} = m_{\text{sext}}x
$$

$$
k_{\text{sext}} = m_{\text{sext}} D \frac{\Delta p}{p}
$$

corrected chromaticity:

$$
Q' = -\frac{1}{4\pi} \oint \{K(s) - mD(s)\} \beta(s) ds
$$

Resume:

The geometry and the maximum momentum of the particles is defined by the dipole strength

Strong focusing quadrupole lenses lead to a transverse oscillation of the particles

Focusing properties of a magnet

Foc. & defoc. lenses have to be combined to lead to an overall focusing scheme in both planes.

The β-function defines an envelope enclosing the single particle trajectories and together with the emittance it defines the beam size

Number of oscillations per turn (the tune) depends on the overall focusing fields in the ring

The beam emittance is a intrinsic beam property and describes the quality of the particle distribution. It corresponds to the area of an ellipse in x, x' phase space and is constant (for a given energy).

$$
\frac{p}{e} = B \rho
$$

$$
x'' + x\left(\frac{1}{\rho^2} - k\right) = 0
$$

Resume:

Dispersion: effect of a momentum error (spread) on the particle orbit

Chromaticity: ... on the focusing properties (tune)

Bibliography:

- **1.) P. Bryant, K. Johnsen: The Principles of Circular Accelerators and Storage Rings Cambridge Univ. Press**
- **2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992**
- **3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01**
- **4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm cern report: CERN-2006-002**
- **5.) A.Chao, M.Tigner: Handbook of Accelerator Physics and Engineering, Singapore : World Scientific, 1999.**
- **6.) Martin Reiser: Theory and Design of Chargged Particle Beams Wiley-VCH, 2008**
- **7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997**
- **8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970**
- **9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990**