cyclotron RF systems

outline

- cyclotron basics
- resonator design techniques
 - transmission line
 - 3D finite element
- resonator tuning
- power coupling
- power generation
- RF control
- some specific examples

cyclotron basics

original observation: homogeneous magnetic field isochronous • (Lawrence & Livingston 1931)

$$\frac{mv^2}{R} = qvB \qquad R = \frac{mv}{Bq} \quad v_{orb} = \frac{Bq}{2\pi m}$$

- accelerate with RF electric field with $v_{RF} = h v_{orb}$ (h integer)
- drift tube linac "rolled up" in a magnetic field •

sb/CAS201505/4

why it should not work

- transverse optics
 - homogeneous field: fieldindex n = 0
 - Q_z , $v_z = 0$; no vertical stability
 - Inear growth of vertical beamsize
 - Q_r , v_r = 1; resonance
 - no stable orbit due to imperfections
- longitudinal optics
 - · isochronous: no longitudinal stability
 - relativistic mass increase
 - ➡ loss of synchronisation with accelerating voltage

- fringe field effects: fieldindex n = ε > 0
 - Q_z, v_z > 0; marginal vertical stability
 ➡ large beamsize ➡ bad transmission
 - Q_r , $v_r < 1$; no resonance
 - "weak" focussing
- loss of synchronisation with accelerating voltage gradual
 - acceleration possible over limited number of turns
 - maximum energy dependent on acceleration voltage 50 keV acceleration voltage: 12 MeV protons Bethe and Rose, Phys. Rev. 52 (1937) 1254–1255

how to get it really working

- radially decreasing field + modulation RF frequency
 - vertical and phase stability
 E. MacMillan, Phys. Rev. 68 (1945) 144
 V. Veksler, Phys. Rev. 69 (1946) 244
 - synchro-cyclotron
 synchrotron
 storage ring workhorse high energy physics
- radially increasing field + azimuthal field modulation
 - vertical stability and isochronism
 - Thomas, Phys. Rev. 54 (1938) 580 and 588
 - fixed RF frequency
 - isochronous cyclotron workhorse nuclear physics

synchrocyclotron

 $\lambda/2$ transmission line with capacitive load on both ends

- frequency variation by variation of C_{R}
 - capacitance rotating in vacuum (RotCo)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 %

600 MeV synchrocyclotron CERN

sb/CAS201505/8

synchrocyclotron

 $\lambda/2$ transmission line with capacitive load on both ends

- frequency variation by variation of C_R
 - capacitance rotating in vacuum (RotCo)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 % Orsay 19 - 24 MHz

200 MeV synchrocyclotron Orsay

synchrocyclotron

• $\lambda/2$ transmission line with capacitive load on both ends

- capacitance rotating in vacuum (RotCO)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 %
 Orsay 19 24 MHz

sb/CAS201505/10

synchrocyclotron Liverpool

operational parameters

- orbital frequency (non-relativistic) $v_{orb} = 15.2 \frac{Q}{A} \overline{B} [MHz]$ \overline{B} average magnetic field along orbit [T] Q/A charge-to-mass ratio ion
- typical values
 - compact RT cyclotrons 1 15 MHz
 - superconducting cyclotrons 6 35 MHz
 - separated sector cyclotrons 1 10 MHz
 - research machines
 - multi-particle
 - multi-energy
 - ➡large orbital frequency range
 - typical example SC AGOR-cyclotron @ KVI
 - particles
 - energy
 - orbital frequency
- protons Pb
 - 190 5 MeV/nucleon
 - 31 5.5 MHz

operational parameters

 orbital and resonator frequency ranges incompatible
 use different harmonic modes (example AGOR) different phasing of resonators

sb/CAS201505/12

operational parameters

- orbital and resonator frequency ranges incompatible
 use different harmonic modes
- harmonic mode
 - geometry acceleration electrode ➡ possible values
 - typical h = 1 6, max. 10
- acceleration voltage
 - typical V = 50 100 kV; max. 1000 kV
- RF power
 - typical P = 10 100 kW; max 400 kW (excl. beamloading)

resonator types

- transmission line ($\lambda/4$ or $\lambda/2$)
 - capacitively loaded by acceleration electrode(s)
 - TEM-mode
 - most common solution

shape acceleration electrode vs. harmonic

- highest acceleration: particle passes symmetry axis for $\phi = \pi$ $\Delta E = -QV_D \sin(h\alpha/2) \sin(\phi)$
- not all harmonic modes possible
 e.g. α = 60° ➡ no acceleration for h = 6

resonator types

- single gap resonator
 - separated sector cyclotrons
 - used at PSI, RCNP and RIKEN
 - TE110 mode

sb/CAS201505/16

resonator types

- single gap resonator
 - separated sector cyclotrons
 - used at PSI, RCNP and RIKEN SRC
 - TE110 mode

SRC Single Gap Type Resonator

/ kvi - center for advance radiation technology

resonator design: transmission line model

- traditional approach (used until ~15 years ago)
 - validation on scale models

sb/CAS201505/18

resonator design: transmission line model

- design AGOR cavities
 - transmission line model
 - model measurements
 - results
 - ∆ frequency < 1 MHz range 22 – 62 MHz
 - Δ loop height < 5 mm range 100 mm
 - Δ Q-factor/power < 10 %
- design accuracy sufficient for construction

resonator design: 3D simulations

- recent trend; facilitated by computer and ICT revolution
- advantages
 - calculation of more complex resonator shapes
 - coupling with CAD-packages: input detailed geometry
 - detailed insight in current and voltage distribution
 better optimization of
 - cooling
 - peak fields (breakdown probability)
 - detailed maps RF-field for trajectory calculations
 - higher accuracy resonance parameters
 - coupling with thermal and mechanical simulations (deformation)
 - better insight in higher order modes
- disadvantages
 - · less insight in critical parameters
 - initial stages design significantly slower
 - large computing power required

sb/CAS201505/20

university of groningen

resonator design: 3D simulations

- optimization electric fields AGOR central region
 - reduce breakdown rate

resonator design: 3D simulations

- 75 MHz resonator for 400 MeV/nucleon ¹²C cyclotron IBA
 - 4 parallel transmission line cavities
 - optimized voltage distribution
 - suppression higher order modes along Dee
 - mechanical stiffness

sb/CAS201505/22

resonator design: 3D simulations

75 MHz resonator for 400 MeV/nucleon ¹²C cyclotron IBA

frequency tuning transmission line resonator

- resonance condition Z_D = -Z_L
- transmission line resonators
 - length transmission line
 →mobile short
 - characteristic impedance transmission line
 mobile panel, plunger
 - capacitance acceleration electrode
 mobile panel
 - combination of techniques for coarse and fine tuning

frequency tuning: VARIAN PT cyclotron

- frequency adjustment and tuning with sliding shorts
 - move both to retain symmetry
 - move under power •
- high performance contacts
 - silver plated CuBe spring
 - carbon-silver contact grain
 - 50 A per contact at 60 MHz
 - development GANIL/AGOR

frequency tuning: GANIL injector cyclotron

change characteristic impedance transmission line

frequency tuning: RIKEN ring cyclotron

- change of characteristic impedance at different location
 - no high current density contacts on stem
 - box to median plane:

more capitance
lower frequency

- box to outside:
- less inductance \Rightarrow higher frequency
- resonator characteristics
 - 18 45 MHz
 - 300 kV @ 45 MHz
 - 150 kW @ 45 MHz

sb/CAS201505/28

frequency tuning: GANIL main cyclotron

• change capacitance acceleration electrode

frequency tuning: GANIL main cyclotron

frequency tuning: single gap resonator

- basically two options
 - gap capacitance
 - chamber inductance

frequency tuning: single gap resonator

- basically two options
 - gap capacitance
 - chamber inductance

sb/CAS201505/32

frequency tuning: single gap resonator

- basically two options
 - gap capacitance
 - chamber inductance

RCNP ring cyclotron

power coupling: capacitive

- ✓ simple mechanics
- also fine tuning control
- X high voltage X insulator
 - X discharge

sb/CAS201505/34

power coupling: inductive

- X multipactor
- X variable frequency resonator: complex mechanics
- X high current rotating/sliding contact

Dee

power generation

- synchrocyclotron: oscillator
 - resonator determines resonance frequency

- isochronous cyclotron: amplifier
 - (broadband) solid state preamplifier
 - narrowband tube endstage (one or two stages)
 - tuned to required frequency
 - impedance matching (50 Ω line or directly to load)

sb/CAS201505/36

power generation: new development

- modular parallel solid state amplifier
 - \checkmark redundancy \Rightarrow reliable
 - ✓ hot swappable
 - X complex
 - **✗** low efficiency
 - X reflected power (circulator)

RF controls

- controlled parameters
 - amplitude acceleration voltage
 - phase acceleration voltage
 - required when using several independent resonators
 - resonator tuning
 - high intensity: possibly matching (beam loading)
- measured parameters
 - amplitude acceleration voltage
 - phase acceleration voltage
 - phase incident wave acceleration voltage
 - reflected power

sb/CAS201505/38

RF controls: design issues

- pick-up probes
 - mechanical stability
- pick-up electronics
 - large amplitude and frequency range
- feedback loops
 - high gain for phase and amplitude stability
 - compensation resonator response
- grounds loop via RF circuitry

RF controls: overview

courtesy Peter Sigg, PSI

sb/CAS201505/40

RF controls: amplitude

courtesy Peter Sigg, PSI

- power pulse at start-up to pass through multipactor region
- amplitude stability <10⁻⁴

sb/CAS201505/41

- essential for multi-resonator system
- phase stability <0.1°

sb/CAS201505/42

RF controls: tuning

courtesy Peter Sigg, PSI

• bandwidth typ. 1 Hz

example: VARIAN PT cyclotron

- 250 MeV protons
- 4 coupled $\lambda/2$ resonators driven via one power coupler
 - 4 Eigenmodes; only three can be excited
 - push-pull mode
- complex tuning control
 - control parameters: 4 positions sliding short
 - error signals
 - phase drive power resonator 1
 - 3 voltage ratios resonator 1 resonator 2; 3 and 4
 - 4 x 4 transfer matrix not diagonal
 - ➡ no independent servo loops

sb/CAS201505/44

example: VARIAN PT cyclotron

- 250 MeV protons
- 4 coupled $\lambda/2$ resonators; 1 amplifier

example: VARIAN PT cyclotron

- 250 MeV protons
 - 4 coupled $\lambda/2$ resonators driven via one power coupler
 - 4 Eigenmodes; only three can be excited
 - push-pull mode

sb/CAS201505/46

example: PET isotope production cyclotron

 2 MHz λ/4 resonators; π-mode for protons, 0-mode for deuterons

acknowledgement

- Claude Bieth, GANIL for introducing me in the RF wonderland
- Yuri Bylinski, TRIUMF Antonio Caruso, LNS Marco di Giacomo, GANIL Peter Sigg, PSI John Vincent, NSCL IBA VARIAN PT for providing a lot of information

sb/CAS201505/48

