Today you've already heard about science, technology and application of cyclotrons to medicine, from some of the world’s leading experts: M. Schippers, W. Kleeven and S. Brandenburg.

I aim to repeat little of what they have already presented...

Instead, I'd like to give you a glimpse of what is possible, and what is revolutionary, in the cyclotron domain, mid-2015.
Cyclotrons in general:

- Can Accelerate all ions: H^+, H_2^+, H_2^- and highly charged heavy ions
- Intensities: highly charged heavy ions to ~ 1 mA and H^+, H_2^+ to ~few mA
- Advanced cyclotrons are possible in all three Cyclotron Flavors: Lawrence, Synchronous, Isochronous

Key Characteristics of Cyclotron Flavors:

- Lawrence and Synchrocyclotrons are weak focusing and have longitudinal phase stability like synchrotrons and linacs
- Isochronous are strong focusing (AVF) and have no relation between period and momentum (sit at the synchronous transition energy –momentum and period are not related)
- Isochronous share many key beam physics properties with FFAGs (they are derived from the same set of equations)
How the Cyclotron Flavors scale with Energy and Field:

- Lawrence have a simple uncritical field scaling but energy is limited to 20 MeV or less by an accumulating ion phase error (with respect to acceleration gap crossing)

- Synchrocyclotrons - share the same field scaling simplicity with Lawrence but have unlimited final energy – the frequency synchronously declines with increasing mass-energy

- Isochronous $T \sim r^2$ has no limit but you have to simultaneously solve the vertical focusing limit in the AVF field that scales as $1/B^2$

Cyclotron Flavors and Intensity:

- Lawrence no real limit but with internal ion sources a few hundred microamps have been demonstrated

- Synchrocyclotrons – low intensity (enA): Low duty factor \(~1000\) acceleration cycles per second, with a full acceleration cycle of order few hundred microsecond and the same ‘bucket’ space charge limits as the other flavors

- Isochronous are the highest intensity CW ion accelerators – milliamps protons at both low energy and high energy have been achieved
Me: These days, in Hampton, on the seacoast of New Hampshire (45 mi north of Boston), I represent:

- **Antaya Science and Technology** - my ‘flat’ boutique accelerator design firm / new technology incubator
- **Antaya Foundation for Science and Technology** - supporting secondary school science and engineering education
- **AMMNX** - a medical device manufacturing company
- **Antaya Proton Therapy** – developing advanced low cost local PT centers

A major theme in all this for me is a mixture of advanced cyclotron beam dynamics and ‘what is next possible’ superconductivity -

Compact High Field Superconducting Cyclotrons

Compact High Field Cyclotrons in general:

- Are necessarily about going to high magnetic guide field: \(p/q=rB \)
 - This scaling characteristic is shared with synchrotrons (also betatrons and microtrons)
 - Synchrotrons operate essentially on one fixed equilibrium orbit by ramping \(B \)
 - Cyclotrons contain a nested set of EOs from \(T=0 \) to \(T=T_{\text{final}} \) in a fixed \(B \) field

- Can Accelerate all ions: \(\text{H}^+, \text{H}_2^+, \text{H}_2 \) and heavy ions

- Are possible in all three Cyclotron Flavors: Lawrence, Synchronous, Isochronous

Why high field? *We found already with the K500 that a 2x increase in average field results in a facility cost (cyclotron, vault, services) decrease of 3X*
Compact High Field Superconducting Cyclotron Development Timeline:

- 1982 - K500 at MSU was the first compact high field superconducting Cyclotron
 - It is isochronous with B~3-5T and fully saturated AVF poles (very important)
 - With iron AVF poles high energy and focusing are not compatible
 - Heavy ion acceleration represents a ‘sweet spot’ where both work well enough
 - Demonstrated that when you double B the cost declines by $/3

- 1980s-1990s - Many Compact Heavy Ion Superconducting Cyclotrons for heavy ions were built- only 1, AGOR, could also accelerate protons directly.

Compact High Field Superconducting Cyclotron Development Timeline (cont’d):

- 2003-2007 – MIT High Field Synchrocyclotron commercialized by Mevion
 - It is the highest field particle accelerator B_0 ~ 9T
 - $T=250$ MeV and $I=40$ enA
 - It was my first attempt to make a compact proton therapy machine using superconducting magnet technology
 - The field scaling solution came in 2004
 - The full quantitative beam dynamics solution with self-extraction was achieved in 2007

- For Single room PT, to date, Mevion has orders for about 10 installations
Beam Dynamics scaling to high fields (Antaya 2004)

- 2008-2011 MIT Nanotron Design Studies
 - Lawrence $B_L = 6T$
 - Portable, transportable weak focusing cyclotron for Active Interrogation
 - Simple field, RF and $T \sim 10$ MeV

- Above $6T$ the radial and axial cold mass thermal (and decentering load) supports begin to dominate the design envelope

- The Nanotron solved this by including the iron inside the cryostat with the Sc coils

- Also, it features dry conduction cooling
Compact High Field Superconducting Cyclotron Development Timeline (cont’d):

- 2010-2012 MIT Megatron Design Studies
 - \(B_0 \approx 4.5 \text{T} \) .. my first attempt at scaling isochronous proton cyclotrons to high field
 - High intensity (mA), Long Standoff Active Interrogation

- Featured Rare Earth Ferromagnetic Flutter Poles to generate the AVF Field

- Beam Dynamics solution at 250 MeV achieved in 2011

Future Trends in Cyclotrons #1

“AMIT Compact High Field H- Cyclotron for PET Isotopes”

Accelerator Unit, Division of Electrical Engineering, CIEMAT (Spain)
High Field Superconducting Cyclotron
Development Timeline (cont’d):

- **2009-2012** MIT / CIEMAT Design Studies for a weak focusing compact isotope generator
 - CIEMAT approached me and others to propose new accelerator initiatives for them to develop
 - I proposed high field cyclotrons and this is in fact the accelerator class they chose for development
 - But MIT Nanotron IP limited what they could do with compact high field H⁺ cyclotrons

- I had felt that H⁻ at high field, missed by others, was possible, and this would give CIEMAT a unique ‘space’ of their own to develop
 - 1T is no real hard limit for probabilistic Lorentz Stripping
 - D. Obradors came to MIT and we found a H⁻ solution ~4T at ~10 MeV in early 2010

- C. Oliver also came to MIT and began the quantitative Beam Dynamics effort

Highest Field H⁻ Compact Superconducting Lawrence Cyclotron:

- CIEMAT AMAT in 2015 is now well underway...
 - Complete systems design for a stand alone isotope generation is a hospital has been completed
 - T>8.5 MeV and I~10 eµA
 - For C¹¹ and F¹⁸ radioisotopes

- It is an impressive large & successful collaboration: 10 companies, 14 Research Labs

- It has a ‘beautiful’ quantitative weak focusing cyclotron beam dynamics design (C. Oliver and collaborators)
Some CIEMAT AMAT Hardware:

Future Trends in Cyclotrons #2

“ION-12^{2}SC Portable, Self-Shielding High Field N13 Ammonia PET Isotope Generator”

Ionetix Corporation (USA)
High Field Superconducting Cyclotron Development Timeline (cont’d):

- 2012-2015 Ionetix Isotron for N13 Ammonia for Injection
 - Tc-99m is the most commonly used imaging isotope in the US with only a one week in hand stock at any given time
 - It is derived from Mo-99m decay
 - Mo-99m is made by fissioning ^{235}U in a high flux reactor
 - In May 2010 both HFR and NRU had emergency shutdowns and the US was essentially out of Tc-99m for SPECT cardiac perfusion imaging
 - I started getting calls at MIT.
 - Many Folks/Labs/Orgs began looking at new reactor and accelerator Tc-99m supply concepts

- But there is a better imaging agent- lower dose, high resolution imaging: N13 Ammonia but... $T_{1/2}$ is only 10min

- I founded Ionetix to put N13 generators in a clinic next door to PET Cameras!
Isotron scale?

- 160 times higher final proton energy

Isotron Dee / Resonator
Isotron Prototype First Beam

Ionetix production model ION-12SC

12 MeV 1800 kg cyclotron + target + chemistry self-shielding unit dose
Ionetix N13 Ammonia Generator Status – 3 installs so far planned in 2015:

- First ION-12SC is going to the University of Michigan Medical School Cardiology Department

- Second system is to be installed on the fourth floor offices of a 15 doctor cardiology practice in Sarasota Florida ... this is what I was trying to do

- The third to Wisconsin where it will be installed in a track and moved around to medium size hospitals

Ionetix ION-12SC is fully portable and transportable:
Future Trends in Cyclotrons #3

“Variable Energy Air Core Synchrocyclotron for Proton Therapy”

Massachusetts Institute of Technology (USA)

High Field Compact Superconducting Cyclotron
Development Timeline (cont’d):

- 2011-2014 MIT Iron Free Variable Energy High Field Synchrocyclotron (4 tonnes!)
 - Origins were also in the Megatron campaign at MIT
 - A. Radovinsky found a clean solution for a self-shielded iron free design with a straight-forward optimization in 2011
 - Later variable energy was added – the field is linear with current and B_0 sets T_{final} exactly

- It has been licensed by MIT to ProNova for PT but in principle can be built at any energy

- Has the low duty factor and intensity characteristic of synchrocyclotrons
Future Trends in Cyclotrons #4

"High Intensity Variable Energy \(H_2^+ \) Cyclotron-FFAG for Proton Therapy and Isotope production"

Paul Scherrer Institute (Switzerland)

Very Novel Alternating Gradient \(H_2^+ \) Cyclotron:

- 2015 Cyclotrons with Fast Variable and/or Multiple Energy Extraction
 - C.Baumgarten, PSI
 - See PhyRevSTAB_16_2013_100101
 - \(H_2^+ \) stripping extraction in the reverse bends

- FFAG magnet configuration- edge crossing solution was the key development

- Applicable low to high energy- isotopes, PT, & ADS

- Note \(q/m=0.5 \) and reverse field alternating sectors always makes it bigger than AVF isochronous cyclotrons for a given \(B_0 \) but this is a very interesting concept!
Future Trends in Cyclotrons #5

"IBA C400 for Carbon Therapy"

Ion Beam Applications (Belgium)

High Field Compact Superconducting Cyclotron Development Timeline (cont’d):

- 2011-2015 IBA C400 Carbon Cyclotron
 - K=1600, 7m diameter, tonnes
 - Carbon @ 400 MeV/n
 - \(\text{H}_2 \) stripping extraction to get protons at MeV

- Green sheet design campaign - much new ground has been broken:
 - Beam Dynamics
 - Extraction
 - Ion sources & high intensity
 - Magnet Design and analysis
 - RF

- It is ready to go...
Future Trends in Cyclotrons #6

“TAAC Compact High Field Isochronous Cyclotron for Ultra-Fast Pencil Beam Scanning Proton Therapy”

Antaya Science and Technology (USA)

AS&T Technically Advanced Affordable Cyclotron

• Origins of this Cyclotron:
 • General problem of the cost of PT
 • The challenging problem of Organ Motion that obscures PT precision

• January 2103 NIH Experts Meeting in Bethesda
 • Many researchers were at this meeting were looking for ways to track organ motion (MR, CT, in patient PET, proton radiography)
 • As a development path this ‘felt’ hard to me
 • Still, with so many good people looking at tracking organ motion, it seemed this development path was properly ‘covered’

• What should I look at?
 • Everyone knows how to hold their breath for a few seconds- So I put up a nice challenge for my team at AS&T
 • Could we develop a system (cyclotron and fast gantry) that could treat a 10x10x10 cm³ tumor in the rest portion of a single breath hold?
The Compact Superconducting Gantry was already well under way...

- Procure Double Bend Achromat Gantry (Cameron, Anferov and Antaya)
 - Each bend is independently an achromat
 - Field level 2-4 T
 - Cryogen Free

- ProCure licensed to ProNova in 2013

Compact High Field Superconducting CW Isochronous Cyclotron for Ultrafast Pencil beam Scanning

A 2X increase in B field over existing proton cyclotrons to get $\$/3 cost reduction while making Ultra-fast Pencil beam scanning possible?

- Solve the problem of scaling the Isochronous AVF Flutter field to High Energy for very compact proton cyclotrons while preserving isochronism, minimizing the integral phase error for acceptable betatron tunes

- Sort out how to do high extracted beam intensities and fast time bases intensity modulation in high field conduction cooled compact superconducting cyclotrons
TAAC Tune Diagram...

Isochronous, 3 Sector, 230 MeV, 0.42 m extraction radius

TAAC Field design:

Simple return yoke, superconducting coils, modest spiral, average field 4-7T
TAAC engineering design:

2.2m diameter, 1.6m tall, 30 tonnes, dry cryo-cooled, warm median plane- key technology
proof-of-concept demonstrations (magnet, RF, high intensity injector) are now in progress

Future Trends in Cyclotrons #7

“Honorable Mention: High Intensity H₂ Separated Sector Driver Cyclotron”

INFN LNS (Italy)
Muon Production using a High Power Separated Sector Superconducting Cyclotron:

- 2012-2015 INFN LNS Catania and collaborators
 - K=3200, 14m diameter, 830 tonnes
 - q/m=0.5 @ 800 MeV/u
 - H_2^+ stripping extraction to get protons at 800 MeV

- Mostly a demonstrated technology- much in common with PSI and RIKEN ring cycs

- Also applicable to Accelerator Driven Systems sub-critical nuclear reactors

Thank you. Onward. TAA