THE URE BY RINGS CANCER TREATMENT FOR ALL SPECIES

JAMES DELA CRUZ VELIKO DIMOV Han Li Mauro Pivi Valeria rizzoglio Sebastian Rothe

CBTR ION THERAPY CENTER

Some of the Target Species

Goblin (definitely need eye tumor treatment)

and the brain tumor of Sauron

Elf

SRIM simulation for Armoured Sauron

Accelerator layout

Acceleration and extraction sequence

-> HUGE Reduction in beam delivery time

Properties of the Rings

Energy (MeV/u)

Magnets and RF cavities inventory

Device name	Devices in operation	Remarks	Number of spares
Main dipole (1 family)	32 × 4	for 4 rings	1 + coils
Main quadrupole (3 families)	24 × 4	4 rings	1 + coils
Main ring sextupoles (2 families)	4×4	4 rings	1 + coils
Main ring horizontal correctors	12 × 4	4 rings	2
Main ring vertical correctors	12 × 4	4 rings	2
Tune kicker Air-cooled	2 × 4	4 rings	1
Injection bumpers	2 × 4	4 rings	1
Beam Dump bumpers	2 × 4	4 rings	1
Air-cored correction quadrupoles	1×4	4 rings	0
Thin' magnetic extraction septum	1 x 4	4 rings	Coils
Thick' magnetic septum	1 x 4	4 rings	Coils
Electrostatic extraction septum	1 x 4	4 rings	selected components
Magnetic injection septum	1 x 4	4 rings	Coils
Electrostatic injection septum	1 x 4	4 rings	selected components
RF cavity (312.5 kHz)	1 x 4	4 rings	1 + selected components
RF knock-out cavities	1 x 4	4 rings	1 + selected components
Chopper bumpers	4	common extraction line	1 + coils
Extraction line dipoles	25	12 irradiation rooms	1 + coils
Extraction line quadrupoles	52	12 rooms	2 + coils
Extraction line horizontal correctors	20	12 rooms	1
Extraction line vertical corrector	20	12 rooms	1
Raster Scanning Magnets	24	12 rooms	2
Injection line dipoles	6	common injection line	Coils
Injection Line quadrupoles	25	common injection line	1 + coils
Injection line horizontal corrector	10	common injection line	1
Injection line vertical corrector	10	common injection line	1
Riesenrad dipole	2	Gantry room	0
Proton gantry dipoles	6	Gantry rooms	0

Injector Parameters

Operational frequency of the RFQ and IH 220 MHz.

	Proton	Carbon	Argon
Relativistic Beta after the linac	0.122	0.122	0.122
Revolution period in synchrotron(us)	3.2	3.2	3.2
max number of turns for multiturn injection	20	20	20
pulse length from linac (for each ring) (us)	64	64	64
time needed to change the injection magnets(us)	2	2	2
total length of the pulse from the source (us)	262	262	262
circumference of synchrotron 120m			

Injection scheme into the 4 rings

Treatment sequence

- two patients in two different rooms
- the technicians start preparing the patient (alignment and position verification)
- Once the patient is ready then the technician requests the mastership
- If the beam is used by the other patient, the technician sees a countdown on the computer screen

"The beam doesn't wait for the patient, the patient waits for the beam" (TM).

Building Layout

Timeline

	-			
Τ	echr	nical	design	

Building Construction2 yearsManufacturing (accelerator)3 years

2.5 years

Accelerator Installation and Commissioning 2 years

Upgrade Phase 1 (Ar Linac) Upgrade Phase 2 (Ar gantry)

Costs & Revenue

Construction	CBTR (million euros)
Building	~100
Accelerators	~200
Labour	~30
Total	~330

Annual Operating Cost Estimate ~ 30 million

Daily organization (Mo/Fr):

<u>Patients:</u>	8 am – 6 pm: treatment patient
Fields: 2-3	6 pm – 4 am: research
Fractions: 35	4 am – 8 am: daily Quality Assurance
	During the weekend: research (from externals 2000 euros/beam hour)

2500 patients per year (~90M Euros per year)

We found a potential investor.

Summary

- reduction of magnetic hysteresis cycling by a factor of 4 compared to using one ring
- reduction of irradiation preparation time by an increase in the number of rooms
- possible upgrade by decoupling the four rings increasing the number of irradiations by 4

Reminder: The Spread out Brad Pitt

Thank you !