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HIMAC

hospital

annex
(scanning)

First dedicated medical heavier ion accelerator
C‐ion RT since 1994

First dedicated medical heavier ion accelerator
C‐ion RT since 1994

• Ion species: High LET (100keV/μm) charged particles He, C, Ne, Si, Ar
• Range: 30cm in soft tissue 800MeV/u (Si)
• Maximum irradiation area: 22cmΦ
• Dose rate: 5Gy/min 
• Beam direction: horizontal, vertical

HIMAC
Heavy Ion Medical Accelerator in Chiba

Scatterer

X- and Y- scanning magnets

Scatterer

Wobbling magnets

Scatterer

 The beam profile is originally 
sharp.

Multi-leaf 
Collimator

 In order to enlarge the beam size, 
a scatterer is inserted.  

 A pair of orthogonal magnets is 
used to form a uniform dose 
distribution in the lateral direction.

 A multi-leaf collimator tailors the 
beam so as to match with the 
cross-sectional shape of the tumor. 

Wobbling Method for Lateral Field



Accelerators for Medical Applications, 
Vienna, June 1st , 2015

Koji Noda, 
Dept. Accelerator and Medical Physics, NIRS 4

Ridge
Filter

Range
Shifter

Range
Copensator

 The beam energy is 
originally monochromatic.

 Ridge filter is inserted in 
order to expand the beam 
energy so as to match with 
tumor thickness.  

 A range shifter is used as 
energy absorbers for the 
fine tuning of the range.

 Range compensator is set 
in order to adjust the end-
point to the curvature of 
tumor.  

Tumor

Ridge Filter Method for SOBP

Irradiation room

Positioning area

Accelerator Treatment control

Gate signal generator

Watch & record system

Beam monitor

Planning 
simulation

Reference Image

Positioning system
using x-ray TV images

Compar
e 

X-ray
TV

Positioning Image

PSD

Respiration
waveform

Gated beam extraction system
(RF knockout method)

Interlock system

Ion beam

- Irradiation synchronized with a patient‘s respiratory motion -

30-40% of treatment number requires 
the respiratory gated irradiation

Respiratory Gated Irradiation
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We should modify a treatment planning 
corresponding to change of  target during treatment,
Adaptive Cancer Treatment

Scanning
Magnet

Range Shifter

Especially sensitive organ motion

840ｃｃ 69ｃｃ

(a) (b)

 Beam utilization efficiency 100％
 Irradiation on irregular shape target
 No bolus & collimator

 Sensitive beam error
 Longer irradiation time 

Pencil-Beam 3D Scanning
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A) TPS for Fast Scanning ⇒ ×5

B) Extended Flattop Operation ⇒ ×2

C) Fast Scanning Magnet ⇒ ×10

100-times speed up !!
Key Technoly  Fast 3D Scanning within Torelable Time for moving target

Fast scanning for moving target
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Ion SourceLinac
Synchrotron

Room E

S.C. 
Gantry

Room F

HIMAC

New Facility

Room G 
(under construction)

Room B
Room C Room A

Main specifications
Ion species 12C
Irradiation method 3D Scanning
Beam Energy 430 MeV/n (max.)

Maximum Range 30cm in water
Maximum Field 22×22 cm2 (E, F)

Room E & F with H/V scanning ports
have treated more that 600 pts

since 2011
Room G with rotating gantry

is under development.

HIMAC and New Facility 

・Operation
- Daily QA (MU calibration, range check etc) 〜 15min/course
- Treatment irradiation (except positioning) 〜 2min

- 30 patients/day under 3hr operation of 2 rooms 

Treatment with 3D Scanning
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T
um

or
s

Prostate
Uterus

Head
& Neck

Lung

Liver

Bone &
Soft tissue

Eye
Lachrymal

Rectum

Digestive
duct

Pancreas

 More than 10 000 pts treated since ‘94.
 1 000 pts/y,  100 shots/day @180 d/y
 Downtime rate < 0.5%

HIMAC Treatment

The HIMAC clinical trial with carbon-ion has proven

 a short course treatment, such as one fractional
treatment of lung cancer, is possible.

 very effective against radio-resistive cancer.

Summary of Clinical Results
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28 - 32GyE (1 fraction)
03/4 ~ 06/3

54 – 79.2GyE (9 fraction)
97/9 ~ 00/12

52.8 - 60GyE (4 fraction)
00/12 ~ 03/11

59.4 – 95.4GyE (18 fraction)
94/10 ~ 97/8

LCR > 95%, a 5 year OSR  50-60% and a cause-specific SR  70-80%. These results correspond to 
those obtained with surgery. The treatment period and the number of fractions have been successively 
reduced from 18 fractions over 6 weeks to single fraction in one day.  It has been carried out since April 
2003.

Single Fraction Treatment with Respiratory Gated Irradiation 

Clinical Results (1)

Before treatment
After 8 Year

( 52.8 GyE )

Treatment against Radio-Resistive tumor

Clinical Results (2)
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scatterer collimatorcompensator
Ridge 
filter

• wobbling method

Wobbler
magnets

 double‐scatterer method

2nd scatterer collimatorcompensator
Ridge 
filter

1st scatter

Broad Beam Delivery
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• range‐shifter scanning

 energy scanning

Scanning 
magnets

Range 
shifter

Pencil beam delivery (scanning)

Double 
Scatterer

Wobbler 3D Scanning

Pos. Error <±0.5 mm
@ 2nd Scatterer

<±2.5 mm <±0.5 mm
/ < 10%

Spill Ripple No effect Avoid ripple with 
around wobbling
freq.

Suppress ripple 
with kHz-order

Low dose-
rate control

No No Necessary

Intensity 
Modulation

No No Necessary

Energy Scan Fixed Fixed Full energy scan

Requirements 
from Static Tumor Treatment 
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Double 
Scatterer

Wobbler 3D Scanning

Beam 
ON/OFF

< 1 ms < 1 ms <  0.1 ms
@ spot scanning

Intensity 
Modulation

No No Necessary

Low dose-rate 
control

No No Necessary

Energy scan Fixed energy Fixed energy Full energy scan
(Hybrid scan)

Requirements 
from Moving Tumor Treatment 

I. Precise and easy dose management

 Slow extraction

II. Fast beam ON/OFF for respiratory gating irradiation

III. Time structure control for beam wobbling and 3D scanning method

IV. Beam control under variable energy operation for 3D scanning

V. Intensity control for 3D scanning with respiratory gating.

VI. Precise position control for double scattering and 3D scanning

VII.Precise beam-size control for 3D scanning

3D scanning has required higher performance of slow extraction 
compared with broad beam methods.

Requirement from Medical System
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シンクロトロンを構成する電磁石
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Transverse Motion in Synchrotron
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⇒ Slow Extraction

Circulating
Beam

Extracted beamPeeler
（Septum）

Requirements from Radiotherapy
 Beam duration for  a few hundreds micro-seconds

to a few seconds
 Precise dose management 

2 s

The HIMAC synchrotron has employed 
a slow extraction method combined the third-order resonant extraction and the 

beam heating through transverse RF electric field.

Slow Extraction from Synchrotron

X‘

XR

ConstX 

Driving term
⇒ Dipole component

Driving term
⇒ Quadrupole component
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Resonance of Betatron Oscillation
- Integer Resonance -
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ベータトロン振動と多極磁場の共鳴
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Driving term
⇒ Quadrupole field

Resonance of Betatron Oscillation
- Half-Integer Resonance -

ベータトロン振動と多極磁場の共鳴
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Resonance of Betatron Oscillation
- Third-Integer Resonance -
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Stable Oscillation

in Parabolic Potential

y

x

x

U(x)

Driving particles to unstable region,  
beam is slowly extracted from ring
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Third-Integer Resonant Slow Extraction
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Third-Integer Resonant Slow Extraction
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c Betatron
amplitude

Unstable
region

⊿p/ p

Beam

Amplitude growth
due to RF- KO

Betatron
amplitude

Unstable
region

⊿p/ p

Beam

Betatron
amplitude

Unstable
region

⊿p/ p

Beam

Moving
resonance Induction

acceleration

X’

X

X’

X

X’

X

(1) The Q-driven method extracts the beam slowly by shrinking the separarix through
approaching the tune to the resonance, which is controlled by changing the Q-field of the
synchrotron. q  0

(2) Owing to the chromaticity effect, the tune can be approached to the resonance while changing
the momentum through beam acceleration or deceleration. q = q0 +·p/p  0

(3) Under the constant separatrix, transverse heating can enlarge the amplitude of the circulating
beam, and particles with larger amplitude than the separatrix can be extracted from the
synchrotron. As a transverse-heating method, the RF-KO method has been utilized.

Third-Integer Resonant Slow Extraction

Q-Driven Acc-Driven RF-KO

Q-Driven Acc-Driven RF-KO

Fast beam on/off Several 100 ms Several ms (?) <0.5 ms

Time 
Structure

Fine OK by FB OK OK

Global OK by FB OK by FB OK
by FB & FF

Intensity Control Not easy Not easy OK

Position Control Complicate Hardt condition Easy

Profile Control OK OK Easy

Variable Energy Not easy Not easy Easy

Performance
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RF-KO extraction
K.Noda et al., NIM-A 374, 1996

•Easy control

•Stable position & profile

•Easy and Fast beam ON/OFF

Heating through 
transverse RF kick 

ࢄ૛ࢊ
૛ࣂࢊ
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Under the constant separatrix, transverse 
heating can enlarge the amplitude of the 
circulating beam, and particles with larger 
amplitude than the separatrix can be extracted 
from the synchrotron. As a transverse-heating 
method, the RF-KO method has been utilized. 

ܳ ൌ
݌
3
൅ ,ݍ ݍ ≪ 1/3

RF-KO Slow Extraction
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Amplitude dependence of the horizontal tune     
Frequency modulation (FM)

Global spill control  

Amplitude modulation (AM)

Amplitude dependence 
of the tune

+

y

x

x

U(x)
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RF-KO Slow Extraction with FM & AM

Circulating beam

fk=fk0+f0

x

x’

fm

Extracted beam

Original emittance

separatrix

Extracted beam

fm, 
fk, 
Vk

ＲＦ

beam

Respiration 
signal

Gate signal

Excitation pattern

RF-KO Slow Extraction with FM & AM
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ビーム出射機器

X

X’

Septum Electrode

Circulating beam

Extracted beam

Septum magnet

Particles, driven to unstable region, jump 
into the gap of septum electrode.

Turn separation

RF-KO Slow Extraction System

S · ݁௜௣ሺఏିఏబሻ ൌ෍ ௝ܵ · ݁
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௝

Sextupole

S

N

N

S

N

S

 22 zxBZ 

Slow Extraction System
- Separatrix Eciter; Sextupole -
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Response time  1 ms !!

Time Scale: 50 ms/div

2 ms/div

2 ms/div

Ⅱ. Fast Beam ON/OFF

Single RF-KO Method

Time Scale:200 ms/div Time Scale:2 ms/div

No problem in beam-wobbling method, 
because the ripple frequency is much far from wobbling frequency 

Such huge ripple brings huge non-uniformity in 3D scanning.

Ⅲ. Time Structure Control
Spill Ripple of Original RF-KO
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Dose distribution and Spill Ripple

・ Dose management in each spot
・ Assuming constant intensity while moving position
・ When large spill ripple…….…

Spot assign

-60 -30 0 30 60
60

30

0

-30

-60

  

0

128

256

384

512

640

768

896

1024

x [mm]

z 
[m

m
]

Uniform distribution
cannot be obtained

When uniformity less than ±1%
⇒ Spill ripple magnitude < ±20% 

Extracted beam

Ⅲ. Time Structure Control
- Dose Distribution and Spill Ripple -

In order to improve the time structure of the extracted 
beam for the fast 3D scanning, the ripple source was 
studied. 

1. Time Structure for one FM period

2. Dual FM method

3. Separate function Method

4. Robust RF-KO method against Q-field ripple

5. Global Spill-Structure Control

Study on Spill Ripple in RF-KO Method
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x 0 x -3.2

Time Scale: 500s Time Scale: 500s

1. Time Structure for One FM Period
1.1. Chromaticity Dependence

Dependence of the spill width during FM period and  of the ripple on the 
chromaticity.
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Horizontal Chromaticity

The spill width and the ripple magnitude 
increases and decreases as a quadratic 
function of the chromaticity, respectively. 

1.1. Chromaticity Dependence
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Peak (a) is the beam extracted mainly due to the transverse RF field, while peak (b) 
mainly due to the synchrotron oscillation. 
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1.2. Dual Peaks for FM Period

Synchrotron O scillation

Betatron
A m plitude

M

A
E

Unstable
Region

⊿p/p

(a)

(b)

⊿p /p=0

Ext.
Regionf

k

A
D

M

Synchrotron O scillation

B etatron
A m plitude

M
AE

Unstable
Region

⊿p/p⊿p/p=0

f
k

A
D

M

D if f.
Region

E xt.
R egion

D iff.
R egio n

L s

L l

L s

L l

(a)The RF frequency matches tune in the
extraction region.

(b) It matches that in the diffusion region.

AE and AD are the amplitude-growth rate 
in the extraction region and that in the 
diffusion region, respectively. 
M is the momentum-growth rate through 
the synchrotron oscillation.

The slope of the L increases with 
increasing the chromaticity. 

1.3. Steinbach Diagram for RF-KO
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Simulation Result:

With increasing the chromaticity, both peak (a) and (b) 
are widened. 
It is considered as follows:
Peak (A): the extraction region is increased with 
increasing the chromaticity.
Peak (B): The average distance from the particles in 
the extraction region to the boundary is to be long with 
incasing the extraction region. Further, the particles 
move obliquely toward the boundary due to amplitude 
beat through the RF-KO and due to momentum growth 
through the synchrotron oscillation. For a large 
chromaticity, thus, it takes the long time to reach to the 
boundary, compared with for a small chromaticity.
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1.4. Spill-Structure Control by Chromaticity

FM signal

FM signal

FM signal
(A) Phase=0deg.

(B) Phase=180deg.

(A)+(B)
AM

FM

AM

FM

Vk
fk

Vk
fk

Vk
fk

Func. Generator
AFG2020 HP3314A

Trigger Signal

Spectrum Analyzer

0

180 To RF Amp

Mono freq.

 Chromaticity Control

 Spill-shape Control by narrow BW

 FM + FM with 180 deg

 Utilizing same AM to dual FM

2. Dual FM Method (1)
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200 ms/div 500 s/div

Ripple  30%

2. Dual FM Method (2)
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(b) :x 

Curve (a) and (b): Extraction region and Diffusion region, respectively.
With increasing the chromaticity, the extraction region is widened.                        

(A) The RF-KO with the mono-frequency (fE) is applied. 
The intensity of the extracted beam is measured as a function of the fE.

(B) The another RF-KO with the mono-frequency (fD) is additionally applied.
Curve (b) is obtained as follows : The intensity is also measured as a function of 
the fD, and is subtracted by those in the measurement  (A)

(a) :x 

3. Separate Function Method (1)
- Extraction and Diffusion Regions -

fk=fk0+f0

x

x’

fm

Extracted beam

Original emittance

separatrix
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Synchrotron Oscillation

Betatron
Amplitude

M

A
E

Unstable
Region

⊿p/p⊿p/p=0

Ext.
Regionfk

AD

M
Diff.
Region

RF-KO with mono-frequency is added to 
Extraction Region

Increasing sweep velocity !!

RF-KO spectrum

mono freq.

3. Separate Function Method (2)

200 ms/div 500 s/div

Ripple  20%

kHz-order ripple can be significantly suppressed.

3. Separate Function Method (3)
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Q field ripple brings Spill ripple 
under I/I < 2 x 10-6
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4. Robust against Q-Field Ripple
4.1 Ripple Source

A =±4A0
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X’

Q-field ripple suppression ■ Improvement of PS
■ Feed Back
■ Feed Forward

Another method?
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Tune ripple due to Q-PS ripple

Extracted beam current

Beam ripple magnitude

Beam current ripple term
Q = p/3 + q0

Sx : SX field

Increase q0  under constant A0

2

2
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0 348
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q
A 

Stable region area

4.2. Proposed Method
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4.4. Experiment Result (1)
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5s

Amplitude of RF-KO

500ms/div

RF-KO

Spill

Beam 
current

B-mag 
current

time

In the RF-KO slow-extraction, global 
time-structure can be controlled by 
the amplitude modulation (AM) of 
transverse RF-field. 
Originally, we have used linear AM
function to expand the spill length.

In order to obtain square shaped spill, suitable AM function is necessary!!

?

5. Global Spill-Structure Control
5.1. Requirement

t=t0

C
ou

nt
s

r

Constant boundary

To obtain suitable AM function analytically, we 
proposed simple 1-D model.
The radial distribution of particles is assumed to 
be Rayleigh distribution under diffusion by RF-KO.

Nextt=t1

Diffusion 
by RF-KO

5.2. Simple Model
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Simulation result

Using model, new AM function can be calculated 
analytically to keep the extracted intensity constant.
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5.3. Simulation

without feedback with feedback

200ms/div

1) Without feedback: the result is in good agreement with the simulation one.
2) With feedback system: square shaped spill is realized.

RF-KO

Spill

Beam 
current

AM sig.

5.4. Experimental Result
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Variable-E Operation by GSI etc

Range Shifter

Beam-size growth due to 
Multiple scattering
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Operation pattern

Long treatment time

Standard Operation Pattern

⇒ Penumbra growth

3D scanning

Ⅳ. Variable Energy Operation

Variable-Energy Operation
High speed slice change
 Suppressing beam-size growth
 Reduction of 2nd neutron

NIRS ⇒ Variable-E operation in one cycle！
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Standard Operation Pattern Variable-E Operation by GSI etc

Long treatment time

Standard Operation Pattern

High Duty Operation

NIRS Approach
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Emittance growth due to 
deceleration

Beam Spike after Deceleration

Extracted Beam
Deceleration
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The beam spike should be avoid

Problem in Deceleration Operation

ビーム電流スパイクの発生
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RF-KO: ON

QDS ON

RF-KO: OFF

Without 
deceleration

Beam spike

Beam spike is observed not only just after deceleration,
but also just after turning QDS off.

Beam Spike Problem
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ビーム電流スパイクの原因粒子

Source of beam spike is particles in boundary area of separatrix
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Particle Distribution Frequency Spectrum

Simulation observed particles spilled out from separatrix
through momentum increase due to synchrotron oscillation

Source of Beam Spike

実験によるスパイク抑制出射法の検証

出射ビーム電流
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RF-KO, having mon-frequency resonated with  
tune in extraction region, is applied in order to 
sweep out those particles.

QDS ON

Increasing the ratio Vmono/Vdiff, beam 
spike can be suppressed.
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2D profile during RF-KO extraction 
measured by non-destructive monitor in 
HIMAC synchrotron

Comparison of 
distributions

実験によるスパイク抑制出射法の検証
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Particle-density reduction was verified in the tail region

Particle Distribution during Extraction

NIRS Strategy for Moving Target Treatment
A) Minimizing moving amplitude for irradiation: 

Several mm by respiratory gating
B) Reducing hot/cold distribution by repainting
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We could not obtain uniform distribution.

Ⅴ. Intensity Control
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Target position should be closed to “ZERO” on average
during one slice irradiation

 Phase Control between respiratory curve and Rescanning：PCR

respiration signal

respiration gate

beam current

time

time

time

scanning trajectory

slice No. n n+1 n+2 n+3

Intensity modulation should be required, because almost 
same irradiation time is required in each slice irradiation 
even in different cross section in each slice.
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Preliminary test result AM+feedback sig.

Beam current

Spill

2s

Now, we develop intensity control system during a single flattop.
Based on simple model, AM function is analytically calculated to 
control intensity. Dynamic range of more than 10 is expected. 

Intensity Modulation
by applying global spill control



Accelerators for Medical Applications, 
Vienna, June 1st , 2015

Koji Noda, 
Dept. Accelerator and Medical Physics, NIRS 37

出射ビーム強度制御システム

Applying PI feedback control, the system 
can modulate the intensity range of 4 
times with less than 20% ripple.

This system was required the intensity modulation 
range of 20 times with less than ripple magnitude of 
20%, which is realized by suppression method for 
both spill ripple and beam spike !!

RF Signal Generator
with amplitude feedback 

control

Beam Monitor Scanning Magnet

Robotic Coach

Prototype Spill-Control System

高周波信号発生器

 3 waves synthesizer applied with DDS
 Amplitude feedback modulation with    

10kHz-period
 Intensity control trough PI-control

RF Signal Generator 

Feedback   Control  

Beam Monitor Signal

RF-Signal Output

Status Output

Beam ON Request

Beam Intensity Input

New Spill-Control System
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ビーム強度変調試験

 Intensity modulation ranging from 2 times of routinely delivered 
intensity to 1/15 of that, corresponding to the total modulation range 
of 30 times

 Estimating spill-ripple magnitude in each intensity
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Pattern of intensity modulation

Circulating beam intensity

RF-KO Voltage
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Intensity Modulation Experiment

ビーム強度変調試験
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Pattern of intensity modulation
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Pattern of intensity modulation
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 Measurements in 430,350,290MeV/n
 Intensity modulation with 30 times

Intensity modulation with more 
than 20 times was successfully 
achieved with less that 20% of 
spill-ripple magnitude !! 

Intensity Modulation Experiment
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３．可変エネルギー運転

Multiple Energy Operation
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Operation pattern

High duty operation

Standard Operation

Multistep Energy Operation
with Intensity Modulation

1. Small deviation of magnet field brings tune difference.

2. Slow-extraction is very sensitive to tune difference.

3. It brings change of the extraction angle and emittance.

4. Beam position and size is change at iso-center.

Qx changed case
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Ⅵ. Precise Position Control
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Verification of spot position, size and 
stability of beam intensity during extended 
flattop

Stability of Beam Position and Profile

௡ܦ cos Δߤ ൅ ௡ᇱܦ sin Δߤ ൌ െ
ߨ4
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௫ߦ െ tan Δߤ ൅
ߨ2݊
3

ൌ
௡ᇱܦ

௡ܦ

Dn, Dn’; Normalized dispersion function
: Phase advance from the separarix exciter

to extraction channel.
Sn: Normalized sextupole field
: Chromaticity 
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Hardt Condition
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In order to control beam size at HEBT, it is necessary to define optical parameters of 
extracted beam at the extraction channel as initial condition of HEBT. 

Measurement method of outgoing separatrix was proposed and verified.

Extracted 
beam

At electrostatic deflector
Separatrix

Matched case

Mismatched case

Matched case

Mismatched case

In mismatched case, we cannot control optics!!

Transport

Ⅶ. Precise Beam-Profile Control

Rod 1 Rod 2

Synchrotron ring

S1

X' X'

XX

S2

1) Inserted and fix position of rod1 at x = x1.

2) Search a shadow of rod1 at s2 by changing the horizontal position of the rod2 
every operation cycle of the synchrotron. 

Shadow of rod1 at s2

In this way, outgoing separatrix 
can be measured owing to 
constant separatrix.

L

xx
x




 12
1

Measurement of Outgoing Separatrix
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Comparing simulation with measurement, twiss parameters was defined.
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Optics was redesigned to match the extracted beam.

measurement
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ellipse

Estimation of Twiss Parameters
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Beam profile can be estimated at 
each monitor.

at PRN023

Matching with Transport System
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1. Introduction

2. Requirements from Beam Delivery

3. Resonant Slow Extraction

4. Development of RF-KO

5. Summary

Contents

3D Scanning for Moving Tumor
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87

Beam direction

Higher energy

Lower energy

Current pattern of BM■

Scanning magnet (X)■

Scanning magnet (Y) ■

Extracted beam■

Beam current in ring ■

Irradiation gate ■

Energy ID

3mm step in water range

Full Energy Depth Scan

88

Superconducting Rotaing Gantry
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89

Superconducting Rotaing Gantry

He～Ar
Max.800MeV/n
Beam-Woblling Method.
Respiratory-Gated Irrad.
Layer Stacking Irrad.

HIMAC Standard-version@Gunma

C
Max. 400MeV/n
Spiral Wobling Method
Respiratory-Gated Irrad.
Layer Stacking Irrad.

New Treatment System

C, O
Max. 430MeV/n
Fast ３D-Scanning
Respiratory-Gated Irrad.
Rotaing Gantry

1994~ 2004~ 2006~

+

Advanced Standard Version 

NIRS Technology Development
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3rd Integer Resonant Slow Extraction
- Analysis -
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Characteristics of Third-Integer Resonant
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In 1946, R. Willson proposed the hadron RT
owing to excellent physical characteristics 

Hadron RT proposed by R. Willson
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Carbon-ion has highest contrast  
between bio-dose in normal and tumor tissue 

Biological Characteristics
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Building facade with green curtain Entrance hall (1F)

Waiting hall (B2F) Treatment Room E (B2F)

Photo of New Treatment Research Facility

Extra-dose cannot be controlled 

Because of huge spill ripple

Flat spill structure：
It is possible to predict extra-dose

during moving between spot positions.

Slow scanning

Fast 
scanning
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Time Scale:200 ms/div Time Scale:2 ms/div

T. Inaniwa et al., Med. Phys. 34(8), 3302

Adverse Dose Distribution Effect 
by Spill Ripple
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 Beam C6+ 400 MeV/n
 Bare Tune (3.681, 3.130)
 frf 6.6118 (MHz) : Longitudinal RF Frequency
 frev 1.6530 (MHz) : Revolution Frequency
 Vrf 4 (kV) : Longitudinal RF

Voltage
 fs 1.46 (kHz) : Freq. of Synchrotron Oscillation
 fk 1.115 – 1.135 (MHz) : Transverse RF
 fk 4 – 28 (kHz) : Bandwidth (Typical value)
 Vk 1200 (Vpp) : RF-KO Voltage (Typical value)
 x 3.2  0.2 : Horizontal chromaticity
 K2(SXFr1,SXDr1) 1.978 (m-3) : Separatrix Ecitor
 K2(SXFr2,SXDr2) 1.644 (m-3) : *K2 = B''/(Bρ)

Experimental Condition
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ビーム電流スパイクのシミュレーション

Beam spike is observed not only just after deceleration,
but also just after turning QDS off

RF-KO: ON

QDS
ON ⇒ OFF

RF-KO: OFF

Beam Spike

Simulation Study for Beam Spike
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for Moving Tumor
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HIMAC

NIRS

Hyogo Ion Beam Medical Center

1) Proton:
Energy: 230 MeV
2 Gantry + 1 H

2) Carbon
Energy: 320 MeV/n
1 H&V, 45º line

・10GHz-ECR IS: 2
・200MHz RFQ+DTL: 5MeV
・Synchrotron(96m)

Multiturn Injection
RF-KO extraction

3,020 pts treated from  May ’01 to Nov. ‘09

HIMAC

NIRS

10GHz-ECR RFQ+APF-IH Linac

SynchrotronTreatment room

・ Carbon:
Energy: 140-400 MeV/n
H&V, H, V and R&D roo

・10GHz-ECR IS 
・200MHz RFQ+APF-IH: 

0.6 – 4MeV/n
・Synchrotron(~62m)

Multiturn Injection
RF-KO extraction
Acc. Driven extraction

・Spiral Wobbling
Respiratory-Gated Irrad.
Layer-stacking Irrad.

Gunma Uni. Heavy-Ion Medical Center
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HIMAC

NIRS

IMP at Lanzhou, China

SFC

TR5

TR3
TR4

TR2

TR1

TL2

TL1

SSC PDC

T1

RIBLL1

RIBLL2

PT

12.1 
Tm

1.1GeV/u—C6+

2.8Gev--p

9.4 Tm

500MeV/u—

U92+

K=4
50 K=6

9

HIRFL

(161
m)

(128.8
m)Surface tumor

100MeV/n C
(103pts)

Deeply seated tumor
430MeV/n C (45pts)
Cooler-Synchrotron

・ Injector: SFC
・ Cooler Synchro

Charge Ex. Inj.
Cool Stacking

HIMAC

NIRS

HITFiL project

Heavy Ion Therapy Facility in Lanzhou (HITFiL)

Layout of the HITFiL project

Four treatment rooms:

horizontal, horizontal+vertical, vertical and oblique beam lines
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HIMAC

NIRS

The Heidelberg Ion Therapy Centre ・ p, He, C, O:
Energy: 50-430 MeV
1 Gantry + 2 H

・ECR IS: 2
・216MHz RFQ+IH: 7MeV/n
・Synchrotron(~60m)

Multiturn Injection
RF-KO extraction

・ Variable Energy Operation
・ Variable FT (1-10s)
・ Variable Intensity
・ Variable Beam Size

Based on GSI treatments of 400pts since’97, 
HIT was constructed and initiated carbon-ion RT. 

HIT Facility

HIMAC

NIRS

New Projects by Siemens

Shanghai

Kiel
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HIMAC

NIRS

3 treatment rooms
Synchrotron for light ions (z ≤ 6)
Active scanning
Range ≤ 27 g/cm2

Space for 2 gantries

Injector: GSI design
Synchrotron: PIMMS design

・ p, He, C, O:
Energy: p 7-250 MeV

C 7-400 MeV/n
2 H + H&V

・ECR IS: 2
・216MHz RFQ+IH: 7MeV/n
・Synchrotron(~78m)

Multiturn Injection
Acc Driven extraction
RF-KO extraction

・ Active scan

CNAO Facility

HIMAC

NIRS

First Facility Dedicated to Proton RT

Loma Linda University Medical Center was opend in 1990
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HIMAC

NIRS

Shizuoka, S-Tohoku, Fukui, Ibusuki
 Week focusing: High intensity (17nA)
 Accel_driven extraction
 APF-IH Linac for proton

Proton RT Facility by MELCO

HIMAC

NIRS

Proton RT Facility by Hitachi

70-250MeV Synchrotron

Model

Rotating Gantry

Beam Line for Reseach

U. Tsukuba, MDACC, Nagoya, Hokkaido
*Variable FT operation pre-triggered by respiration
* Variable energy operation for 3D scan 


