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Summary
 Energy consumption at CERN

 How is energy spent?
 Electricity, Water and Gas

 From Electrical to Kinetic Energy
 How is electricity converted to acceleration?

 Key electrical consumers?
 Components with power requirements

 Electronics and Power Electronics
 What is the difference

 Power Conversion Principle
 Why and how is energy converted

 Accelerator Power Electronics
 Real world systems – how do they look

 Research Challenges
 The future in powering accelerators



CERN και ενέργεια
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Electricity at CERN
 Interconnections to both France and Switzerland
 Approximately 80% of electricity from France 

 (nuclear mostly)

 Special contract terms with EDF and SIG
 1000 high voltage circuit breakers in operation
 Consumption 

 as high as all households in Geneva area 
 1/10th of the canton (11.3TWh).
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Energy Facts & Figures
 Total consumption 1 000 000 000 kWh/yr

 43% consumed by the LHC 
 Up to 14% by superconductive magnet cooling
 Up to 9% equipment cooling and tunnel ventilation

 11% by its Experiments
 30% by SPS
 7% at its experiments

 3% PS-booster-Linac
 6% Data Centers
 7% in offices, restaurants etc.
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Water
 6 million m3 of water
 Closed circuit of 

demineralised water 
and secondary circuit of 
raw water cooled in 
cooling towers.

 Industrial process water
 Surface treatment
 Production of 

demineralised water
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Natural Gas
 Heating stations at Meyrin 8 million m3

 Heating station at Prevessin – 1.5million m3

 Operated by external companies
 Monitor dust, CO, CO2, nitrogen oxides and sulphur 

oxides



η ενέργεια στους επιταχυντές
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Accelerators at CERN
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Key Energy Consumers
 Direct Energy to the beam

 RF cavities - Klystron
 Magnets

 Environmental Conditioning
 Cryogenics
 Systems cooling
 Tunnel air filtering

 Data 
 Measurements
 Processing

 Infrastructure
 Other

(c) Rey.Hori / KEK
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The force on a charged particle is proportional to the charge, the electric field, 
and the cross product of the velocity vector and magnetic field:

Lorenz force:

Where q is the electrons (positrons, protons…) elementary charge:

For conservative forces (work done independent of the path) the work done by 
a force F along the path s1->s2 transversed by the particle is:

by differentiating:

Conclusion the magnetic field does not produce any work on the direction of 
the vector s travelled by the charged particle. Energy (acceleration) is only 
gained under the effect of electric field.
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RF Cavities - Klystron

+ -beam

Functions:
 Particle acceleration

(c) Rey Hori / KEK
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* The rythm with which particles energy builds up 
depends on its rotation speed

particle arrives exactly
at zero-crossing

Synchronous
frequency
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arrives “late”

Particle gains 
energy
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Εlectro-magnets
Functions:
 Beam steering
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• Rearanging yields the beam rigidity i.e. a measure of the 
force needed to bend the charge direction

• And the bending angle inside a magnet field

• The integrated field is a magnet property also given by 
Amperes law:
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Dipole magnet

• Stores energy E=0.5 L I2

• Consumes power P=I2 R
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(c) Rey Hori / KEK

Functions:
 Beam steering
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Quadrupole magnets
Functions:
 Focussing-defocusing

Two particles enter in the 
accelerator with different
velocity vectors:

Particle
 trajectory A

ρ
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Particle 
trajectory B

vA

vB

Particle on trajectory A 
(reference trajectory)

Particle on 
trajectory B

x

NS

y

NI S

Betatron Oscillation



κδπ

Cryogenics
 Cryogenic pumps are the 

largest single electrical
consumer at CERN

 Total power: 27.5MW
 6 weeks to cool down 

Helium to 1.8K to 4.2K

(c) Rey Hori / KEK



1880s
the war of currents
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Thomas Edisson VS George Westinghouse
 Direct VS alternating current

 AC has two key advantages
 Voltage/current can be transformed
 Current can be interrupted

 Whereas DC is:
 Less dangerous* but
 May not be interrupted with standard switches
 Could not be transmitted in long distances due to the lack of dc transformers

 Westinghouse won the battle!!!
 Alternating current is standard and can be transformed, transmitted to distances of several 

hundred kilometres and may be interrupted with standard mechanical breakers.
 It took us a century to develop technology for handling DC currents!

* If compared to a similar voltage level 50Hz alternating current of which the fluctuations can induce arrhythmia and eventually result in ventricular fibrillation
of the heart

http://en.wikipedia.org/wiki/Ventricular_fibrillation
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Edisson VS Westinghouse

 Electrical power is Ptot=voltage (v) x current (i)
 Using conductors to transmit power hence Rcopper

 Power is lost on the way Ploss=I2R
 Hence useful power is Puseful=Ptot-Ploss

 2 Solutions to save energy:
 Voltage rise -> voltage transformation
 resistance reduction-> superconductive conductors

Notice! Ploss is a function of I and R. Decreasing I by a factor of 2 
decreases power loss by 4 



Εισαγωγή στους Μετατροπείς Ισχύος
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Electronics & Power Electronics
 Electronics is the art of manipulating the flow of 

electrons to perform certain functions
 Receive, transmit and store information
 Generate electromagnetic waves (heat,light)
 Convert electricity to kinetic energy (motors

Analog & 
Digital Electronics

Power Electronics
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Power Conversion
 Electrical voltage needs to be transformed

 From direct to alternating current and the opposite
 From one voltage to another
 From one frequency to another

DC

AC

INPUT
Constant magnitude 

and frequency

DC

AC

OUTPUT
adjustable magnitude 
and frequency

Choppers

Cycloconverters
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Power Converter Structure
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The basic power converter
 Voltage regulator operation based on switching on and off the input 

source with a duty cycle D.
 Inductor operates as averaging device
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Based on slide by Frederick Bordry, CERN Accelerator school 2009

Ik
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ONOFF
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Vk
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Power Semiconductors

Transistors Thyristors

• Turn-on
• Bidirectional
• Low losses

Line-commutated Self-commutated

• Fast
• Line-commutated
• Avalache

Diodes

Power Semiconductors

Thyristors

• MOSFET
• IGBT
• BIGTs and other

• GTO
• IGCT



κδπ

Modulation
 Control of the fundamental frequency component (ac or 

dc) by varying the switch duty ratio

Van

m=0.5

Modulating signal

m= -0.8

Carrier

S1

S4
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Figures of merit in PE
 Power conversion efficiency

 Expresses the effective-ness of a converter in converting input 
power to useful output power (with less wasted power in the 
process)

 Input Power factor
 A high power factor typically indicates a lower input current for 

delivering a certian output power level. (as usually input 
sources have a stiff voltage magnitude)

 Ripple factor
 Is a measure of the voltage or current ripple magnitude in dc 

voltage or current waveform

 Total Harmonic Distortion (THD)
 is a measure of its RMS power of the harmonic components in 

comparison with the RMS power of the fundamental
component of a voltage or current waveform.

𝑛𝑛𝑐𝑐 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑑𝑑𝑑𝑑
𝑃𝑃𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 =
𝑃𝑃𝑖𝑖𝑖𝑖
𝑆𝑆𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑎𝑎𝑎𝑎,𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑉𝑉ℎ,𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉1,𝑟𝑟𝑟𝑟𝑟𝑟
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 The beams are controlled by:
• 1232 SC Main Dipole magnets to bend the beams
• 392 SC Main Quadrupole magnets to focus the beams 
• 124 SC Quadrupole / Dipole Insertion magnets 

 6340 SC Corrector magnets 
 112 Warm magnets 
• SC RF Cavities to accelerate and stabilize the beam

All ~8000 magnets need to be powered in
a very controlled and precise manner

• (in 196 circuits of ~ 6 kA)
• (in 1460 circuits 60 to 600A)
• (in 38 circuits 600 to 900A)

LHC – the Large Hadron collider
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Current Regulation Precision

Injection instance

ripple

Short-term Overall precision Pulse-to-pulse 
Reproducibility

I

time

Injection instance

L Magnet
load

C

Booster 
bridge

Flat-top 
bridge

DCCT

By-pass
switch

Precision components:
• Current ripple
• Short-term (dynamic behaviour)
• Long term (reproducibility)

Typical requirements:
• 1-100ppm depending on application

Current in a transfer line magnet
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The load
• Superconducting magnet: L= 14H
• Nominal current: 20 kA
• Stored energy: 2.8 GJ
• Time constant: 39 hours
• Time for current ramping up: 3h15m

• Energy extraction system (resistor bank, not shown)

The power converter

Slide by Frederick Bordry, CERN Accelerator school 2009

20kA power converter -CMS Solenoid
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Subconverter
(Current source)

3.25 kA , 18V

Reactive network

+

-

• n + 1 subconverters : redundancy, reliability
• repairability
• ease of handling underground
• versatility (6.5kA, 9.75kA, 13kA, 21 kA)

13 kA, 16V

Converter

3.25 kA , 18 V

3.25 kA , 18 V

3.25 kA , 18 V

3.25 kA , 18 V

3.25 kA , 18 V

Converter modularisation
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The load
• Superconducting magnet: L= 7.5 H
• Nominal current: 20.5 kA
• Stored energy: 1.6 GJ
• Time constant: 37’500 s

20.5kA power converter – ATLAS solenoid

The power converter : [20.5 kA, 18V] ; (7+1) x [3.25kA,18V]

Slide by Frederick Bordry, CERN Accelerator school 2009
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BREAKER &

CONTACTOR

INPUT FILTER &

SOFT-START

SOFT COM. INVERTER,

50kHz..100kHz

ISOLATION &

RECTIFIER + FILTER

4Q.L.S.

EMI

FILTER

Input Module, Bd: 70Hz Phase shifted Inverter
Rectifer + Filter

4 Quadrant
Linear Stage

VOUT

Typical Converter topology (120A,10V)

Slide by Frederick Bordry, CERN Accelerator school 2009
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Frequency
Divider

T 1/Syref(k)

k.Ts 

ADC

Power Part
y(t)

DAC

Anti
aliasing 
filter

÷ k Digital
FilterR

Ts

Over sampling

Digital 
controller

Tracking Regulation
Tracking and Regulation with 
independent objectives

Digital control design

Slide by Frederick Bordry, CERN Accelerator school 2009



Έρευνα: πιο αποδοτικά 
συστήματα τροφοδοσίας
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Compact Linear Collider (CLIC)

RF modulators are the 
primary electrical 
power consumer

Pulses of 139us 150kV 
and 160A resulting in 
bursts of 24MW per 
modulator

139µsec

20000µsec

Power 
39GW

43
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Application parameters:
• The load is 1638 Klystron tubes
• 150kV/160A 140µs flat-top required -> 
24MW peak per Klystron -> 39.3GW peak 
load
• Average power per klystron modulator 
168kW
• Accounting for a 90% efficiency (plug to 
drive beam) -> total average power 275MW

AFE DC link cap DC regulator Pulse forming load

CLIC Specifications 
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T1 T2

16kV 0.4kV400kV

ST1=10MVA ST2=1.6MVA
Ksc = 5.6% Ksc = 6%

G

SG=413MVA

AC

transmission 
line

Generation

ZL

Vdrop

Distribution 
line

charger
cap. bank

pulse forming

ZT

Vdrop

Reactive 
compensation

• The network impedance limits the 
power that can be drawn.

• At the rated power network 
impedance will be responsible for 
<10% voltage drop.

• Drawing 39000MVA out of a 
300MVA transformer would 
collapse the voltage (hence 
tripping the protections)

CLIC Grid interface
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From 2Q to multilevel

Q1: V: positive
I: positive

Q2: V:positive
I:negative

S1

S2

Vin

-

+

iout

Vout

Lo
+

-

V

I Q1Q2

Q4Q3

na

Series-connection 
of  2Q dc/dc

Lumped inductor Capacitors in place 
of voltage sources

DC-supply added
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Five level NPC

vdc
150kV

vdc

150kV

Modular-multilevel-converter (MMC)

AFE Concepts

AC Filter size   

Control system   

Reliability    

Spares inventory   

Power range ��� ���� �����

Mechanical integration   

Three phase-bridge

particularly interesting at higher voltage/power applications

Topology comparison for:
 high voltage (>20kV) and 
 high power (>20MW) applications



- Ερωτήσεις;

http://www.cern.ch/aftervisit

http://www.cern.ch/aftervisit
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Life at CERN
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