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Summary

» Energy consumption at CERN
=  How is energy spent?
=  Electricity, Water and Gas
» From Electrical to Kinetic Energy
=  How is electricity converted to acceleration?
» Key electrical consumers?
=  Components with power requirements
» Electronics and Power Electronics
=  What is the difference
» Power Conversion Principle
=  Why and how is energy converted
» Accelerator Power Electronics
=  Real world systems — how do they look
» Research Challenges
=  The future in powering accelerators
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Electricity at CERN

» |[nterconnections to both France and Switzerland

» Approximately 80% of electricity from France
= (nuclear mostly)

» Special contract terms with EDF and SIG

» 1000 high voltage circuit breakers in operation

» Consumption

= as high as all households in Geneva area
= 1/10™ of the canton (11.3TWh).




Energy Facts & Figures

» Total consumption 1 000 000 000 kWh/yr

= 43% consumed by the LHC
= Up to 14% by superconductive magnet cooling
= Up to 9% equipment cooling and tunnel ventilation

= 11% by its Experiments
= 30% by SPS

= 7% at its experiments
= 3% PS-booster-Linac

= 6% Data Centers
=> 7% In offices, restaurants etc.




Water

» 6 million m3 of water

» Closed circuit of
demineralised water
and secondary circuit of
raw water cooled in
cooling towers.

» |ndustrial process water
= Surface treatment

= Production of
demineralised water

Water (
w VWater (output] km




Natural Gas

» Heating stations at Meyrin 8 million m3
» Heating station at Prevessin — 1.5million m3

» Operated by external companies

= Monitor dust, CO, COZ2, nitrogen oxides and sulphur
oxides
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Accelerators at CERN
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Key Energy Consumers

» Direct Energy to the beam
= RF cavities - Klystron

= Magnets
» Environmental Conditioning (©) Rey Hori / KEK
= Cryogenics |

= Systems cooling
= Tunnel air filtering

» Data
= Measurements
= Processing

» |[nfrastructure
Other



Force on a particle

The force on a charged particle is proportional to the charge, the electric field,
and the cross product of the velocity vector and magnetic field:

Lorenz force: |E — q . (E + v X B)

Where q is the electrons (positrons, protons...) elementary charge:
g=e,=1.602-10" [C]

For conservative forces (work done independent of the path) the work done by
a force F along the path s;->s, transversed by the particle is:

N

W = |F-ds by differentiating: d%:q.(v.*Jrv.(vXB)):q.v.E

S

=

Conclusion the magnetic field does not produce any work on the direction of
the vector s travelled by the charged particle. Energy (acceleration) is only
gained under the effect of electric field.




RF Cavities

Functions:

= Particle acceleration
dE L =
I q V- -E
dt

* The rythm with which particles energy builds up
depends on its rotation speed

beam

- Klystron

Particle
T / arrives “late” (c) Rey Hori / KEK

voltage
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time
particle arrives exactly Synchronous Particle gains
at zero-crossing frequency energy




Electro-magnets

Functions:

Beam steering

F=q-(VxB)

<v

At first sight F is not dependent on mass
Since v on a circle of radius p-> F = centripetal force

-2
F=q-(UxB)=m .ac == | |m =y-m,
yo,

*y : lorenz factor (y=1/(1-v3/c?)

Rearanging yields the beam rigidity i.e. a measure of the
force needed to bend the charge direction
And the bending angle inside a magnet field

~ m-v p
B- = — = e A—
i q € B-p

The integrated field is a magnet property also given by
Amperes law:

§_B> . dS - ,Llo . jjj . dA = ,Llo ) IC *Uo: magnetic permeability
C A

of the air




Dipole magnet

Functions:
= Beam steering

e Stores energy E=0.5L I?

e Consumes power P=I2 R

A
u(t)

1 T
S, = ?J-o uzzdt (c) Rey Hori / KEK

T




Quadrupole magnets

Functions:
» Focussing-defocusing

Two particles enter in the
accelerator with different
velocity vectors:

Particle
trajectory B

Betatron Oscillation

Particle on

» Particle trajectory B
v:::, trajectory A

/

Particle on trajectory A
(reference trajectory)

Transfer line




Cryogenics

» Cryogenic pumps are the
largest single electrical
consumer at CERN

Total power: 27.5MW

6 weeks to cool down
Helium to 1.8K to 4.2K

(c) Rey Hori / KEK

¥




1880s

the war of currents



Thomas Edisson VS George Westinghouse

» Direct VS alternating current

» AC has two key advantages
= Voltage/current can be transformed /-\
=  Current can be interrupted \\/

» Whereas DC is:
=  Less dangerous* but
=  May not be interrupted with standard switches
=  Could not be transmitted in long distances due to the lack of dc transformers

» \Westinghouse won the battle!!!

=  Alternating current is standard and can be transformed, transmitted to distances of several
hundred kilometres and may be interrupted with standard mechanical breakers.

=  lttook us a century to develop technology for handling DC currents!

If compared to a similar voltage level 50Hz alternating current of which the fluctuations can induce arrhythmia and eventually result in ventricular fibrillation
of the heart



http://en.wikipedia.org/wiki/Ventricular_fibrillation

Edisson VS Westinghouse

Electrical power is P, =voltage (v) x current (i)
Using conductors to transmit power hence R
Power is lost on the way P .=I°R

Hence useful power Is P g, =Piot~Ploss

copper

y¥ & 3 3

Notice! Ploss is a function of | and R. Decreasing | by a factor of 2

decreases power loss by 4

» 2 Solutions to save energy:
= Voltage rise -> voltage transformation
= resistance reduction-> superconductive conductors
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Electronics & Power Electronics

» Electronics is the art of manipulating the flow of
electrons to perform certain functions
= Receive, transmit and store information
= Generate electromagnetic waves (heat,light)
= Convert electricity to kinetic energy (motors

Analog &
Digital Electronics

Power Electronics

&)
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Power Conversion

» Electrical voltage needs to be transformed
= From direct to alternating current and the opposite
= From one voltage to another
= From one frequency to another

Choppers

L

INPUT

Constant magnitude
and frequency

emwa AC

OUTPUT

adjustable magnitude
and frequency

.\‘\
Cycloconverters > ° :




Power Converter Structure

Power stack

DC filter Power switces AC filter Accelerators
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The basic power converter

» \oltage regulator operation based on switching on and off the input
source with a duty cycle D.

» |nductor operates as averaging device

vt Lo 05T t
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Power Semiconductors

[ Power Semiconductors J
I
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Modulation

» Control of the fundamental frequency component (ac or
dc) by varying the switch duty ratio

'AMA-_

Modulating signal
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Figures of merit in PE

» Power conversion efficiency

=  Expresses the effective-ness of a converter in converting input Pt dc
power to useful output power (with less wasted power in the ne = p.
process) m

» |nput Power factor

= A high power factor typically indicates a lower input current for CoSQp = ﬁ
delivering a certian output power level. (as usually input Sin
sources have a stiff voltage magnitude)

» Ripple factor Vac,rms

= Is a measure of the voltage or current ripple magnitude in dc Vi
voltage or current waveform

» Total Harmonic Distortion (THD)

. . . . V
= is a measure of its RMS power of the harmonic components in THD = —rms

comparison with the RMS power of the fundamental Vi,rms
component of a voltage or current waveform.




LHC — the Large Hadron collider

» The beams are controlled by:
- 1232 SC Main Dipole magnets to bend the beams

« 392 SC Main Quadrupole magnets to focus the beams
« 124 SC Quadrupole/ Dipole Insertion magnets

e (in 196 circuits of ~ 6 kA)
= 6340 SC Corrector magnets e (in 1460 circuits 60 to 600A)

« SC RF Cavities to accelerate and stabilize the beam

All ~8000 magnets need to be powered in
a very controlled and precise manner

&)
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Current Regulation Precision

Current in a transfer line magnet

A . Pulse-to-pulse
| Short-term Ov{erall precision Reproducibility
/ ’/ ___________ e N
\ B
2
G Iy a
Injection instance Injection instance
timet
Precision components: Typical requirements:
e Current ripple e 1-100ppm depending on application

o Short-term (dynamic behaviour)
* Long term (reproducibility)







20kA power converter -CMS Solenoid

The load

e Superconducting magnet: L= 14H
 Nominal current: 20 kA

» Stored energy: 2.8 GJ

» Time constant: 39 hours

e Time for current ramping up: 3h15m

* Energy extraction system (resistor bank, not shown)

Detector characteristics

The power converter B N
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Converter modularisation

- 325kA,18V .
#—  3.25 kA, 18V
—t 13 kA, 16V |
— 3.25kA, 18V _.j "
Subconverter
— — (Current source)
571 3.25kA,18V _

_ 3.25KA, 18V :”L + Qé_

—t—)
ST — * n + 1 subconverters : redundancy, reliability
* repairability
Converter » ease of handling underground

. versatility (6.5kA, 9.75KA, 13KA, 21 kA)







20.5kA power converter — ATLAS solenoid

The load

e Superconducting magnet: L=7.5H
* Nominal current: 20.5 kA

» Stored energy: 1.6 GJ

» Time constant: 37'500 s

The power converter :

Y ——

[20.5 KA, 18V] ;
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Typical Converter topology (120A,10V)

Input Module, Bd: 70Hz Phase shifted Inverter 4 Quadrant

Rectifer + Filter Linear Stage
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CONTACTOR SOFT-START 50kHz..100kHz RECTIFIER + FILTER
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Digital control design

t Tracking Regulation

Tracking and Regulation W|th \ |
Independent objectives /

ref() y(t)
T 1/S | Power Par*—<l .
ol k.T _
Digital - 1 S ARG
Digital o
controller — R = k Filter M aliasing
Frequency Over sampling filter
Divider

Slide by Frederick Bordry, CERN Accelerator school 2009
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Compact Linear Collider (CLIC)

RF modulators are the
primary electrical
power consumer

797 klystrons ? " 797 klystrans
15MW, 139 s | | | circumferences ( 15 MW, 139 s

. delay loop 73.0 m
drive beam accelerator CR1292.2m drive beam accelerator
CR24383m J"

‘ 25km 'Ll 7N\ /\

delay loop CR2 CR delay loop Pulses of 139us 150kV
m @ @ decelerator, 24 sectors of 876 m and 16OA reSUItlng In
y7#~ bursts of 24MW per
'm i i BC2
ML um % eps - BDS jm”f !!!!!2 ,HL modulator
275 km 2.75km /_‘
e~ main linac, 12 GHz, 100 MV/m, 21.02 km e* main linac TA

B e - - e - ————

48.3 km 139usec
CR combiner ring Main Beam ' u =
TA  turnaround

DR damping ring

PDR predamping ring
BC  bunch compressor booster linac, 6.14 GeV Power
BDS beam delivery system 39GW

IP  interaction point
B dump

e injector, e*injector, |
286GevV | Y e 286GeV |
PDR
398 m 20000psec




CLIC Specifications

an= 4 A6

Modulator's output pulse specification AFE DC link cap DC regulator  Pulse forming load

Nominal pulse voltage Vien 150 kV
Nominal pulse current L 160 A Vm" ! b
Pulse peak power Prod out 24 MW W
Rise & fall times trise trau 3 s > Vel = | L
Settling fime tser 5 IS < : &
Flat-top length triat 140 us i i i
Repetition rate REPR 50 Hz - E—
Voltage overshoot Vous 1 % T — !‘T

Precisions
Flat-Top Stability EFTS 0.85 % o
Reproducibility (6kHz-4MHz) PPR 10 ppm Application parameters:

Efficiencies * The load is 1638 Klystron tubes_

» 150kV/160A 140us flat-top required ->

Charger electrical efficiency Neh 96 % 24MW peak per Klystron -> 39.3GW peak
PES electrical efficiency Nofs 98 % load
Pulse efficiency Nputse 95 % * Average power per klystron modulator
Modulator global efficiency Nmod_global 90 % 168kW

» Accounting for a 90% efficiency (plug to
drive beam) -> total average power 275MW




CLIC Grid interface

Distribution

line - ﬂ
translmission Varo ‘Vdrop ~ : -- U hild
Ine (Q) - : —
z Z == —C———_ | || ﬂ || 14 4@
AC Generation ] -- U
Reactlve_ cap. bank
1 compensation charger pulse forming
T T2 « The network impedance limits the
400KV @ 16kV @ 0.4kV power that can be drawn.
: « At the rated power network
- S=10MVA Sr=16MVA impedance will be responsible for
Sc=413MVA Kse = 5.6% Kse = 6% <10% Voltage drop
« Drawing 39000MVA out of a
LS S S SIS SN SRS SR 300MVA transformer would
S¥ 8¢ S S;; 413179 260 215 collapse the voltage (hence

tripping the protections)




From 2Q to multilevel

2 1

—H[
L
O

5 | ne 5
||

Series-connection Lumped inductor Capacitors in place DC-supply added
of 2Q dc/dc of voltage sources

CEfW
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Q1:
Q2:

V. positive
|: positive

V:positive
l:negative




AFE Concepts

Topology comparison for:
= high voltage (>20kV) and
= high power (>20MW) applications

e T 2
E]']Ij Lﬁ- " = i 2 vc:::C‘ x —f}s: ﬂ:& X —‘é " }7—‘/1
-:E:- .-r-w-. 1 | A .{}543 .{3 1 .{} )
o A ! % % i -
R vt el g
B kE 5
Three phase-bridge Five level NPC Modular-multilevel-converter (MMC)
AC Filter size * L X 2 L X 2 4
Control system YX X L X 2 L 2 2
Reliability % Y X 3 T X 3 'Y X
Spares inventory XS L 2 L 2 & 2
Power range Ooo aood Ooooo
Mechanical integration Y XX L 2 L 2 2

* particularly interesting at higher voltage/power applications
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Life at CERN
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