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An old slides from Chamonix 2005, when we were in 
full design phase for the LHC collimation...
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Clearly, itʼs long way to achieve all of that for FCC!
First studies must be targeted to achieve a conceptual design that addresses the main 
cleaning challenge, taking into account impedance and machine protection aspects.

Do not discuss today other collimation roles!
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(in number of protons)
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limiting cold location

LHC total intensity 
reach from collimation

Key parameters that determine the intensity reach in a collider:
Collimation cleaning
! Determined by collimation system: optics, collimation layouts, materials, settings,...
Quench limits of superconducting magnets
" LHC design assumed about 5 mW/cm3, i.e. about 7.6x106p/m/s at 7TeV
! These old design figures went through MANY updates - now 30-50 mW/cm3.
Beam lifetime assumptions 
" This is a crucial parameter for the design, but difficult to “guess” 
!  → determines the total losses in cold magnets for given cleaning;
!  → determines the power loads on the collimators, input to the mechanical design.
! No need for collimation system if lifetime is infinite, but...
! LHC design: assumed a transient “minimum allowed lifetime” of 0.2 hours
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High stored beam energy
(melt 500 kg Cu, required for 1034 cm-2 s-1 luminosity) ~ 360 MJ/beam

Large transverse energy density
(beam is destructive, 3 orders beyond Tevatron/HERA) 1 GJ/mm2

High required cleaning efficiency
(clean lost protons to avoid SC magnet quenches) 99.998 % (~10-5p/m)

Activation of collimation insertions
(good reliability required, very restricted access) ~ 1-15 mSv/h

Small spot sizes at high energy
(small 7 TeV emittance, no large beta in restricted space) ~ 200 μm

Collimation close to beam
(available mechanical aperture is at ~10 σ) 6-7 σ

Small collimator gaps
(impedance problem, tight tolerances: ~ 10 μm) < 3 mm (at 7 TeV)

Big and distributed system
(coupled with mach. protection / dump)

~100 locations
~500 deg. of freedom 

Quench

Damage

Heating

Activation

Precision
ImpedanceStability

How can we meet all these challenging 
(and sometimes conflicting) requirements?
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LHC collimation layout
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Two warm cleaning insertions, 
3 collimation planes
! IR3: Momentum cleaning
! ! 1 primary (H)
! ! 4 secondary (H)
! ! 4 shower abs. (H,V)
! IR7: Betatron cleaning
! ! 3 primary (H,V,S)
! ! 11 secondary (H,V,S)
! ! 5 shower abs. (H,V)

Local cleaning at triplets
! ! 8 tertiary (2 per IP)

Passive absorbers for warm 
magnets
Physics debris absorbers
Transfer lines (13 collimators)
Injection and dump protection (10)

Total of 108 
collimators 
(100 movable).
Two jaws (4 motors) 
per collimator!

Momentum
cleaning

IR3

Betatron
cleaning

IR7

Picture by C. Bracco
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Three-stage cleaning for horizontal losses only
(9 collimators per beam, including vertical absorbers).
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2012-13: “tight” collimator settings (TCP gaps as at 7 TeV) for higher beta*! 
60 cm for protons, 80cm for ions.

Collimation cleaning at 4 TeV (β*=60cm)
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Loss maps in IR7
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1/10000

B. Salvachua

Critical location (both beams): losses in the dispersion suppressor (Q8) from 
single diffractive interactions with the primary collimators. No other significant 
limitations observed.

Beam 1
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Note 7 orders of 
magnitude on y scale!

Simulations

Measurements

Excellent qualitative agreement:
all critical loss locations identified.

R. Bruce
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Accuracy of simulation predictions (ii)
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E. Skordis et al.

Transport of shower products over more than 700 metres!

Compared measured data from BLMʼs in IR7 against doses from shower cascades.
Impressive agreement considering the complexity of the simulation behind!
Working on improving further the agreement - some “factors” missing at specific 
locations (like TCLA collimators).
Note however that this level of understanding came after years of operation - not 
need to have full integrated simulations to design a performing system...

Measurements

Simulations

2013 quench tests at 4 TeV
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Very good performance of the collimation system so far (up to 140MJ):
! - Validated all critial design choices (HW, SW, interlocking, ...);
! - Cleaning close to simulations and ok for 1.5 nominal intensity at 7 TeV;
Solid solution to start with!
The present LHC collimation cannot protect the cold dispersion suppressors.
" - No obvious limitation for quench, magnet lifetime is being addressed. 
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! - Validated all critial design choices (HW, SW, interlocking, ...);
! - Cleaning close to simulations and ok for 1.5 nominal intensity at 7 TeV;
Solid solution to start with!
The present LHC collimation cannot protect the cold dispersion suppressors.
" - No obvious limitation for quench, magnet lifetime is being addressed. 
! - Focus of present studies is moved to the experimental regions.
The collimators determine the LHC impedance 
! - Rich program on “dream” materials and new collimator concepts.
Collimation alignments and validation of new setting are time-consuming.
The operation flexibility in the experimental regions (VdM scans, spectrometer 
polarity, β* leveling, ...) is affected by collimation constraints.
The β* reach is determined by collimation constraints: retraction between beam 
dump and horizontal TCTs which are not robust.
Collimator handling in radiation environment will be challenging.

Build this into the 
FCC design!!
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A. Lechner

R. Bruce et al.

Fundamental system limitations: 
dispersive losses in the cold 
dispersion suppressor.

Appropriate solutions must be 
foreseen early on into the FCC 
lattice design!



S. Redaelli, FCC design 12/06/2014

Warm design for “cold” collimation

21

L. Gentini et al.

Ion Pump
(30 L/s)

Ion Pump
(30 L/s)

Pirani 
Gauge

Penning 
Gauge

Angle valve

Collimator Support 
Assembly (HTC_)

Warm Module 
(VMGDA)

Jack (x3)

Collimator Module
(TCLD)



S. Redaelli, FCC design 12/06/2014

Warm design for “cold” collimation

21

L. Gentini et al.

Ion Pump
(30 L/s)

Ion Pump
(30 L/s)

Pirani 
Gauge

Penning 
Gauge

Angle valve

Collimator Support 
Assembly (HTC_)

Warm Module 
(VMGDA)

Jack (x3)

Collimator Module
(TCLD)

D. Ramos for the WP11 team



S. Redaelli, FCC design 12/06/2014

Warm design for “cold” collimation

21

L. Gentini et al.

Ion Pump
(30 L/s)

Ion Pump
(30 L/s)

Pirani 
Gauge

Penning 
Gauge

Angle valve

Collimator Support 
Assembly (HTC_)

Warm Module 
(VMGDA)

Jack (x3)

Collimator Module
(TCLD)

D. Ramos for the WP11 team

... but we will have 
time to think of more 
optimized solutions 
for FCC! 
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A very rich scientific program on future collimator materials is 
part of the LHC collimation project studies! 
Our dream:
" Find a material with low impedance and high 
" robustness that can clean efficiently the beam halo, 
" withstand the worst failure scenarios and have 
" minimum perturbation of beam stability at small gaps!
" ...and that does not deteriorate in a high-dose environment.
Important synergy with other domains, crucial role of industry!
Strong collaborations world-wide: 
! EuCARD, EuCARD2, US-LARP (BNL), Kurchatov, ...
Inter-disciplinary activity involving beam tests, state-of-the-art 
simulations and material development.
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Clear synergy with FCC-pp challenges - our partners are 
very interested in extending the high-energy frontier! 
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Clear synergy with FCC-pp challenges - our partners are 
very interested in extending the high-energy frontier! 

Not discussed here - associated technological topics: 
mechanics, controls, vacuum, coating, ... 
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Setup at the 
Tevatron, court. 
of G. Stancari

A hollow electron beam runs parallel to the proton beam
" - Halo particles see a field that depends on (Ax,Ay) plane
! - Beam core not affected!
Adjusting the e-beam parameter, one can control diffusion 
speed of particles in the area that overlaps to e-beam. 
! - Drives halo particles unstable by enhancing (even small) 
!   non-linearities of the machine.
This is an ideal scraper that is robust by definition. 
Can be used to control the loss rates on the collimators!
Complex beam dynamics required beam data validation.
Working on a design for implementation in LS2, if needed. 
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Setup at the 
Tevatron, court. 
of G. Stancari

A hollow electron beam runs parallel to the proton beam
" - Halo particles see a field that depends on (Ax,Ay) plane
! - Beam core not affected!
Adjusting the e-beam parameter, one can control diffusion 
speed of particles in the area that overlaps to e-beam. 
! - Drives halo particles unstable by enhancing (even small) 
!   non-linearities of the machine.
This is an ideal scraper that is robust by definition. 
Can be used to control the loss rates on the collimators!
Complex beam dynamics required beam data validation.
Working on a design for implementation in LS2, if needed. 

Expected to be a key asset for the control of loss rates on 
the collimation system. Crucial for FCC as well!
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Advanced collimation:
consumable collimator
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Advanced collimation:
consumable collimator

Solid base to start 
from, in case we 

cannot find suitable 
materials for the FCC  

failure scenarios.
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Promises of crystal collimation:
1. Improved DS cleaning in channeling;
2. Reduce impedance: less secondary 
    collimators and larger gaps;
3. Much improved cleaning for ion beams.
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Low-intensity beam tests at the LHC will start in 2015!
   - Horizontal and vertical crystals installed for one beam.
Only rely on this technique after satisfactory beam results at the LHC.
Clearly, this is a promising solution for FCC. But the total stored energy poses 
severe challenges for the absorption of the extracted beam.
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severe challenges for the absorption of the extracted beam.
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Beam

Standard collimation

Beam

Absorber

Crystal 

???

Crystal-based collimation

Promises of crystal collimation:
1. Improved DS cleaning in channeling;
2. Reduce impedance: less secondary 
    collimators and larger gaps;
3. Much improved cleaning for ion beams.

Uncertainties on the extrapolation to unknown 
energy territories and operational challenges 
call for solid experimental validation before this 

technology can be relied upon for future designs.
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To achieve a first conceptual solution in the give time constraints, 
we propose to startup from a scaled-up system derived from the 
present one:
" Scale the optics and insertion length.
! Layout design including local collimation in dispersion suppressors
! Optimize collimator locations an number starting from present system
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To achieve a first conceptual solution in the give time constraints, 
we propose to startup from a scaled-up system derived from the 
present one:
" Scale the optics and insertion length.
! Layout design including local collimation in dispersion suppressors
! Optimize collimator locations an number starting from present system
Tools:
" Clearly interaction models for 50 TeV beams must be reviewed, but 
! present tools are expected to be good to go.
Important inputs/prerequisites:
" Optics support for collimation insertion design
! Lattice for tracking and reasonably complete aperture models
" First-order estimate of quench limits 
! First expectations for machine aperture
! Reasonable assumptions for the beam lifetime.
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Note that the present system is the result of many years of design 
and optimization for multi-turn collimation:
" Not obvious relations between betatron phase advance and momentum cuts.
! Constraints on collimator gaps. Empirical optimization of collimator layouts.
Cannot expect a complete work in a short time.
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We have a system that works very well. How to scale it up for FCC?
Note that the present system is the result of many years of design 
and optimization for multi-turn collimation:
" Not obvious relations between betatron phase advance and momentum cuts.
! Constraints on collimator gaps. Empirical optimization of collimator layouts.
Cannot expect a complete work in a short time.
Example: Keep the same gaps in mm: “reasonable” impedance; push 
until later technological developments beyond present state-of-the-art 
" Scale the beta by a factor 50 / 7 = 7 → brings the length to ~ 3.5 km
" Very safe optics solutions for starting. Need more studies to gain in length.
Relaxing some constraints puts more pressure on technological 
developments (smaller gaps, materials for lower impedance, controls 
challenges, ...).
Difficult to find a trade off until we do not have a first solution in place 
to play with...

Trade off / potential improvements:
Can we reduce the insertion length?

Need 3 cleaning insertions? Separate H and V betatron cleaning? 
Can we achieve the same cleaning with different optics?
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! New materials (or consumable design) low-impedance and high robustness. 
! Consider advance concepts: crystal collimation and hollow lenses
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The present LHC collimation was reviewed, recalling design challenges, 
deployed solutions, achieved performance and limitations
Clearly, this provides a solid base for the design of collimation systems 
in future multi-TeV machine!
" We try to put together resources to help with this design phase (supervision
! of a working on the first conceptual design of collimation insertions). 
In particular, the ongoing upgrade studies provide already useful 
information and feedback on design/optics
" We will clearly have to build into the layout local collimation in cold regions
! New materials (or consumable design) low-impedance and high robustness. 
! Consider advance concepts: crystal collimation and hollow lenses
FCC: “natural continuation” of ongoing advanced collimation studies.
Roadmap to kick of collimation design for FCC:
" Scale up the present layout to freeze number and length of collimation regions 
" First performance assessment of cleaning with present multi-stage cleaning.
! See how far we can go with the state-of-the-art before evaluating new paths.
We try to put together resources to help with this design phase, but this 
is clearly challenging with the LHC startup...
" We have found a promising fellow candidate who could start after summer. 


