

Search for the ${\cal B}^0_{(s)} \to \pi\pi\mu\mu$ decay at LHCb.

I. Komarov (ila.komarov@cern.ch)

Why is it interesting to study $B_{(s)}^0 \to \pi\pi\mu\mu$ decays?

 ρ (770), f_0 (980)- light unflavored mesons decaying dominantly to $\pi\pi$

- $B_s^0 o f_0 \mu^+ \mu^-$: dominated by "penguin" and "box" b o s transition. Potentially sensitive to non-standard contribution, access similar physics of $B^0 o K^* \mu^+ \mu^-$ and $B o \phi \mu \mu$
- Allow to test non perturbative QCD models.
- $B^0 o \rho \mu^+ \mu^-$: dominated by b o d penguing and box transition in SM. Potentially sensitive to the non-SM physics, complementary w.r.t. $B_s^0 o f_0 \mu^+ \mu^-$.
- Both are not observed yet

Ilya Komarov (EPFL)

Why do we study B^0 and B_s^0 together?

- Hard to disentangle $f_0(980)$ and $\rho(770)$. Additional resonances from the f family contribute also.
- Study $\pi\pi\mu\mu$ system with large $\pi\pi$ window [0.5, 1.3] GeV allows to see simultaneously $B_s^0 \to f_0\mu^+\mu^-$ and $B^0 \to \rho\mu^+\mu^-$. Expected similar branching ratios.

Figure: $\pi\pi$ mass distribution sWeighted from fit to $M(J/\psi\pi\pi)$

3 / 31

Brief overwiew

$$\mathsf{N}^{observed~B \to X} = 2 \times L \times \sigma_{pp \to b + \dots} \times f_{s(d)} \times \mathsf{Br}(\mathsf{B} \to X) \times \epsilon_{detection}$$

- Search for $B_s^0 o f_0 \mu^+ \mu^-$ and $B^0 o \rho \mu^+ \mu^-$ decays.
- measure their BR (or set an upper limit), normalised to $B^0 o J/\psi K^*$:

$$\frac{Br(B^0_{(s)}\to\pi\pi\mu\mu)}{Br(B^0\to J/\psi K^*)}=\frac{N_{B^0_{(s)}\to\pi\pi\mu\mu}}{N_{B^0\to J/\psi K^*}}\times\frac{\epsilon_{B^0\to J/\psi K^*}}{\epsilon_{B^0_{(s)}\to\pi\pi\mu\mu}}\big(\times\frac{f_s}{f_d}\big)$$

Here:

- \bullet ϵ selection efficiency. Estimated from MC and data.
- $N_{B^0 o J/\psi K^*}$ number of events in normalisation sample. Estimated from the fit of $M_{\pi K \mu \mu}$ spectrum.
- $N_{B^0_{(s)}}$ number of signal events. Estimated from the fit of $M_{\pi\pi\mu\mu}$ spectrum. Fit of $J/\psi\pi\pi$ to check the fitting model and extract some shape parameters.

Basic selection

- Stripping v20(r1), B2XMuMu line
- Confirm trigger offline
- Mass constraint: $M_{\pi\pi} \in [0.5; 1.3] \; GeV +$ vetoed $\psi(1S, 2S)$ for the non-resonant sample

Figure: $M_{\pi\pi\mu\mu}$ vs. $M_{\mu\mu}$ with indicated veto regions.

Mass distribution before optimisation - too much combinatorial

Figure: $J/\psi\pi\pi$ mass distribution before Figure: $\pi\pi\mu\mu$ mass distribution before selection

selection

BDT selection

- Stripping v20(r1), B2XMuMu line
- Confirm trigger offline
- Mass constraint: $M_{\pi\pi} \in [0.5; 1.3] \; GeV +$ vetoed $\psi(1S, 2S)$ for the non-resonant sample
- BDT selection to suppress combinatorial

Ilya Komarov (EPFL)

Distribution of invariant mass after BDT. (Do you see a problem?)

$K - \pi$ misid suppression

- B^0 signal region polluted by $B^0 \to K^* \mu^+ \mu^-$ decays from πK misidentification. B_s signal region not affected.
- Checked that BDT output is independent from DLL(K- π). Fixing BDT cut (already optimised to suppress combinatorial for $B_s^0 \to f_0 \mu^+ \mu^-$), can optimise the DLL cut alone.

 $DLL(\pi - K)$ - characteristic of a track, telling if this track is more pion- or more kaon-like.

Figure: DLL $(\pi - K)$ vs $M_{\pi\pi\mu\mu}$

Remaining $\pi - K$ misld

Other backgrounds: partially reconstructed

Three possible partially reconstructed backgrounds.

- $B_s \gamma$, leading component $B_s \to \eta^{(\prime)}(\to \pi\pi\gamma)\mu\mu$
 - exp. yield ~ 1.5 events
- $B_s \pi$, leading component $B_s \to \phi(\to \pi\pi\pi)\mu\mu$
 - exp. yield \sim 0.5 events
- ullet Overreconstructed events, leading component $B^+ o K(+\pi)\mu\mu$
 - exp. yield \sim 5 events

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q (^

Negligible backgrounds

Other backgrounds were also considered:

- $B^0 \to D^-(\to \rho \mu^- X) \mu + X$. Out of fit range.
- $B^0 \to D^-(\to \phi(\to \mu\mu)\pi)\pi$ vetoed by dimuon invariant mass
- $B^0 \to J/\psi\omega(\to \pi\pi\pi)$). Out of dipion mass range
- Double misidentified $B_s^0 o J/\psi f_0$ events are vetoed by dipion mass.
- $\Lambda_b^0 \to hh\mu\mu$ -negligeble after selection.
- $B_s \to J/\psi(\to \gamma\mu\mu)f_0$ vetoed by dimuon mass.
- $B_c o J/\psi \pi \pi \pi$ Included wit floating yield to the resonant fit model.

Fitting data. Noralisation and check of the model

Mass distribution of $B \to J/\psi K\pi$ and $B \to J/\psi \pi\pi$ candidates with fit projections overlaid.

Signal sample.

Mass distributions of the sample with fit projections overlaid, zoomed in the range $5.19\text{--}6.0\,\mathrm{GeV}.$

Ilya Komarov (EPFL)

Results

	B_s
N _{candidates}	$55\pm10\pm5$
R	$(1.67 \pm 0.29\pm 0.13) imes 10^{-3}$
Br	$(8.6 \pm 1.5 \pm 0.7 \pm 0.7 (\mathrm{norm})) \times 10^{-8}$
Significance	7.3σ

	B_d
N _{candidates}	$40\pm10\pm3$
R	$(0.41 \pm 0.10 \pm 0.03) imes 10^{-3}$
Br	$(2.11 \pm 0.51 \pm 0.15 \pm 0.16 (\text{norm})) \times 10^{-8}$
Significance	4.8σ

◆ロ → ◆部 → ◆注 → 注 り へ ○

Backup

Theoretical predictions

$Br(B^0_s o f_0\mu^+\mu^-)$	Ref.
$\left(5.21^{+3.23}_{-2.06}\right) imes 10^{-7}$	[ARXIV:0811.2648]
$\left(9.5^{+3.1}_{-2.6} ight) imes 10^{-8}$	[ARXIV:1002.2880]
$(1.67 \pm 0.61) \times 10^{-7}$	[ARXIV:1002.2880]
$(0.81 - 2.02) \times 10^{-8}$	[PhysRevD81,016012]
$(0.63 - 3.37) \times 10^{-9}$	[PhysRevD81,016012]

$Br(B^0\to\rho\mu^+\mu^-)$	Ref.
$\left(5.0^{+2.1}_{-2.6}\right) \times 10^{-8}$	[HEP-PH/9706247] and [HEP-PH/9609503]
$(8.6^{+3.4}_{-4.5}) \times 10^{-8}$	[HEP-PH/9706247] and [HEP-PH/9609503]
$\sim 10^{-7}$	[HEP-PH/9807256]
6×10^{-8}	[HEP-PH/9812272]
$(2.8-8.4)\times10^{-8}$	[PhysRevD77,014017]

Selection summary

Variable	Requirement
BDT	> 0.25 (2011), > 0.15(2012)
$\overline{DLL(\pi - K)}$	> 1
$DLL(\pi - \mu)$	> -1
$DLL(\pi-p)$	> 0
$ProbNN(\mu)$	> 0.25
$M_{\pi\pi}$	$\in [0.5, 1.3] \mathrm{GeV}$
$M_{\mu\mu}$ non-resonant	$\in [0.212, 2.796] \cup [3.216, 3.436] \cup [3.806, 5.05] \mathrm{GeV}$
$M_{\mu\mu}$ resonant	$\in [2.796,3.216]\mathrm{GeV}$
$M_{\pi^+\pi^-\mu^+\mu^-}$	$\in [5.19,6.99]\mathrm{GeV}$
$M_{\pi\leftrightarrow\mu}$	$ ot\in [3.036, 3.156] \cup [3.625, 3.745] \mathrm{GeV} $
$\overline{DLL(K-\pi)_K}$	> 5

Efficiencies

Sample	$arepsilon_{ m acc}(\%)$	$\varepsilon_{\mathrm{trig}} \ \varepsilon_{\mathrm{pres}} \ \varepsilon_{\mathrm{BDT}}(\%)$	$arepsilon_{ ext{PID}}$ (%)	Total (%)
		2011		
$B_s^0 o f_0 \mu^+ \mu^-$	14.26 ± 0.076	5.026 ± 0.033	50.345 ± 0.092	0.3608 ± 0.0031
$B^0 o ho \mu^+ \mu^-$	14.49 ± 0.049	$\textbf{4.211} \pm \textbf{0.015}$	48.755 ± 0.05	0.2975 ± 0.0015
$B^0 o J/\psi K^*$	14.87 ± 0.039	7.4619 ± 0.0089	8.407 ± 0.043	0.0933 ± 0.0005
		2012		
$B_s^0 o f_0 \mu^+ \mu^-$	15.48 ± 0.076	5.174 ± 0.032	46.062 ± 0.096	0.3689 ± 0.0030
$B^0 o ho\mu^+\mu^-$	15.64 ± 0.049	$\textbf{4.103} \pm \textbf{0.029}$	42.813 ± 0.11	0.2748 ± 0.0022
$B^0 o J/\psi K^*$	16.05 ± 0.039	6.688 ± 0.027	$\boldsymbol{9.075 \pm 0.056}$	0.0974 ± 0.0008

- $\varepsilon_{\rm acc}$ geometry efficiency, value and uncertainty extracted from generator statistics.
- $\varepsilon_{\rm trig}$ $\varepsilon_{\rm pres}$ $\varepsilon_{\rm BDT}$ selection efficiency, estimated from Monte-Carlo simulation.
- \bullet $\varepsilon_{\mathrm{PID}}$ PID selection efficiency, estimated from data and MC sample using PIDCalib package.

Normalisation: Fit of $B^0 \to J/\psi K^*$

Parameter	2011 sample	2012 sample
Yield of $B^0 o J/\psi K^*$	10493 ± 110	25129 ± 176
width of first CB $[\text{GeV}/c^2]$	0.01896 =	± 0.00018
ratio of CB widths	0.741 =	± 0.044
Ratio of CB	0.741 =	± 0.015
Part.reco'd Argus shapec	-19 ± 11	
Part.reco'd Argus starting point $[GeV/c^2]$	5.1235 ± 0.0063	
mass $[GeV/c^2]$	5.28521 ± 0.00022	
Combinatorial slope	-5.49 ± 0.75	-5.77 ± 0.47
Yield of partially reconstructed	349 ± 79	911 ± 142
Combinatorial yield	938 ± 119	2712 ± 227
Yield of $_s \rightarrow J/\psi K^*(892)^0$	100 ± 18	219 ± 31
Yield of $_u \rightarrow J/\psi K^+$	48 ± 26	131 ± 44

Table: Results of the fit to the $B^0 \to J/\psi K^*$ data.

Yields of $B^0 \to J/\psi K^*$ need to be corrected in order to substract S-wave.

P-wave is $\sim 96\%$ in our $M_{K\pi}$ mass range according to [PRD 88, 052002 (2013)] anuary 22, 2015 20 / 31

Fit of the $\mu\mu\pi\pi$ sample

- Fit range: 5.19 6.99 *GeV*
- Signal shapes: Double crystal ball with tail parameters fixed from MC and common width parameter.

• Signal yields:
$$N_{signal}^{year} = N_{B_d \to J/\psi K^*}^{year} \times \frac{Br(signal) \times \varepsilon_{signal}^{year}}{Br(B_d \to J/\psi K^*) \times \varepsilon_{B_d \to J/\psi K^*}^{year}} \times (\frac{f_s}{f_d})$$

- Combinatorial component is described by exponent and is free
- Partially reconstructed componants are fitted with MC-defined argus shape with yields, fixed from expectations.
- MISID shapes are fixed from data.
- \bullet $M_{\rm misid}$ is free, MISID yield is under gaussian constraint.

◆ロ > ◆部 > ◆き > ◆き > き り < ②</p>

Fit of the $\mu\mu\pi\pi$ sample

Parameter	2011 sample	2012 sample
$\overline{\mathcal{R}_d}$ '	(0.387 ± 0.0)	$(093) \times 10^{-3}$
\mathcal{R}_s '	(0.404 ± 0.0)	$(071) \times 10^{-3}$
$N(B^0_s o J/\psi f_0)$	2675 ± 59	6218 ± 92
$N(B^0 o J/\psi ho)$	1980 ± 67	4425 ± 100
$M(B^0) [\operatorname{GeV}/c^2]$	5.28459 ± 0.00039	5.28438 ± 0.00027
$M_{ m misid}~[{ m GeV}/c^2]$	5.2036 ± 0.0027	5.2141 ± 0.0018
signal width $[/c^2]$	17.96 ± 0.35	19.86 ± 0.35
$N_{ m comb}$ resonant	796 ± 70	1895 ± 104
slope comb. resonant $[\mathrm{GeV}^{-1}]$	-4.31 ± 0.37	-3.83 ± 0.19
$\mathcal{N}_{\mathrm{comb}}$ non-resonant	56.2 ± 9.2	172 ± 16
slope comb. non-resonant $[{ m GeV}^{-1}]$	-1.22 ± 0.36	-1.44 ± 0.21
$N(B_c^+ o J\!/\!\psi\pi^+\pi^-\pi^+)$	167 ± 25	361 ± 39
$N(B^0 o J/\psi K^*)$	762 ± 20	1858 ± 34
${\it N}({\sf B}^0 o{\it K}^*\mu^+\mu^-)$	7.1 ± 1.0	15.8 ± 1.5

Table: Results of the fit to the data.

1D Likelihood profile

$$\sigma(B_s) = 7.3$$
$$\sigma(B_d) = 4.8$$

Likelihood profile of R($B_s^0 \to f_0 \mu^+ \mu^-$) (left) and R($B^0 \to \rho \mu^+ \mu^-$) (right), where R is $Br(B_{(s)}^0 \to \pi \pi \mu \mu)/Br(B^0 \to J/\psi K^*)$

The red line corresponds to the profile-likelihood, where, for each point probed in R, all other parameters are floating; the blue line corresponds to the likelihood scan along to R, where all the others parameters are fixed to their values at the minimum of the likelihood.

◆ロ → ◆ □ → ◆ □ → ○ □ → ○ ○ ○

23 / 31

2D Likelihood profiles

Figure: Likelihood levels (1..5 σ) of R($B_s^0 \to f_0 \mu^+ \mu^-$) and R($B^0 \to \rho \mu^+ \mu^-$).

4D + 4B + 4B + B + 990

Fit checks: Fit variations

As an additional check with alternative fit models

extending fit range ([5.0-7.0] GeV)

fixing exponent from the right sideband ([5.5-6.97] GeV)

Combinatorial function was described by line.

Fit checks: Fit variations

	default fit	Extended fit range	fixing combinatorial	Linear combinatorial
$\mathcal{R}_s(\times 10^{-3})$	1.55 ± 0.26	1.51 ± 0.26	1.59 ± 0.25	1.75 ±0.26
$\mathcal{R}_d(imes 10^{-3})$	0.329 ± 0.072	0.318 ± 0.072	0.345 ± 0.068	0.406 ± 0.072

Table: Values of \mathcal{R}_s and \mathcal{R}_d from the fit to data in different configurations to check the stability of the results.

Systematics

Main sources of systematics:

- Yield of $B^0 o J/\psi K^*$ signal
 - Statistics and dependence on signal shape
- Efficiency
 - Statistics of MC sample
 - Dependence on model (compared with efficiency, of "dummy" model)
 - Difference with data defined for BDT and trigger (TISTOS)
 efficiencies. Found from comparision of efficiency found on MC with
 efficiency found on reference sample.
- Signal shapes
 - Since shapes were fixed from MC, we had to consider the effect from "wrong shape".

In all cases, uncertinty of parameter was transferred to the systematics in two steps:

- Perform set of fits with examined parameter varied within error
- ullet Define systematics as RMS of the distribution of obtained R_s and R_d

Systematics

Source	$\sigma(\mathcal{R}_s)$	$\sigma(\mathcal{R}_d)$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1	4
Partially- and over- rec. backg.	1	4
Signal shapes	7	14
Efficiencies	19	13
Yields of $B^0 o J/\psi K^*$	18	13
S-wave in $B^0 o J/\psi K^*$	6	4
f_s/f_d	32	_
total	43	26

Table: Systematic uncertainties of \mathcal{R}_s and \mathcal{R}_d relative to their statistical uncertainties.

Fit checks: Toys

Three toy datasets were generated using fitting PDF:

- "Default" values of generation parameters as ones from fit to data.
- "No Bd" default, but R_d set to 0
- "No Bs" default, but R_s set to 0

Parameter	Gen. value	Mean fit value	Mean fit error	Pull mean	Pull RMS	s _{stat}
\mathcal{R}_s	1.132	1.126	0.196	-0.076 ± 0.012	0.98	7.5
\mathcal{R}_d	0.292	0.294	0.065	-0.019 ± 0.012	0.98	5.4
\mathcal{R}_s	0.0	-0.009	0.099	-0.227 ± 0.014	1.14	0.7
\mathcal{R}_d	0.292	0.284	0.064	-0.173 ± 0.012	1.00	5.3
\mathcal{R}_s	1.132	1.118	0.195	-0.118 ± 0.012	0.97	7.5
\mathcal{R}_d	0.0	-0.011	0.041	-0.377 ± 0.014	1.15	8.0

Table: Results of the pseudo-experiments. The second column report the values used in the generation of the pseudo-experiments for \mathcal{R}_s and \mathcal{R}_d ; all other parameters are generated with values close to the ones found in the fit to data, see Tab. 22.

Fit checks: Toys ("As is" parameter distributions)

Significance checks

