Search for the ${\cal B}^0_{(s)} \to \pi\pi\mu\mu$ decay at LHCb. I. Komarov (ila.komarov@cern.ch) # Why is it interesting to study $B_{(s)}^0 \to \pi\pi\mu\mu$ decays? ρ (770), f_0 (980)- light unflavored mesons decaying dominantly to $\pi\pi$ - $B_s^0 o f_0 \mu^+ \mu^-$: dominated by "penguin" and "box" b o s transition. Potentially sensitive to non-standard contribution, access similar physics of $B^0 o K^* \mu^+ \mu^-$ and $B o \phi \mu \mu$ - Allow to test non perturbative QCD models. - $B^0 o \rho \mu^+ \mu^-$: dominated by b o d penguing and box transition in SM. Potentially sensitive to the non-SM physics, complementary w.r.t. $B_s^0 o f_0 \mu^+ \mu^-$. - Both are not observed yet Ilya Komarov (EPFL) # Why do we study B^0 and B_s^0 together? - Hard to disentangle $f_0(980)$ and $\rho(770)$. Additional resonances from the f family contribute also. - Study $\pi\pi\mu\mu$ system with large $\pi\pi$ window [0.5, 1.3] GeV allows to see simultaneously $B_s^0 \to f_0\mu^+\mu^-$ and $B^0 \to \rho\mu^+\mu^-$. Expected similar branching ratios. Figure: $\pi\pi$ mass distribution sWeighted from fit to $M(J/\psi\pi\pi)$ 3 / 31 ### Brief overwiew $$\mathsf{N}^{observed~B \to X} = 2 \times L \times \sigma_{pp \to b + \dots} \times f_{s(d)} \times \mathsf{Br}(\mathsf{B} \to X) \times \epsilon_{detection}$$ - Search for $B_s^0 o f_0 \mu^+ \mu^-$ and $B^0 o \rho \mu^+ \mu^-$ decays. - measure their BR (or set an upper limit), normalised to $B^0 o J/\psi K^*$: $$\frac{Br(B^0_{(s)}\to\pi\pi\mu\mu)}{Br(B^0\to J/\psi K^*)}=\frac{N_{B^0_{(s)}\to\pi\pi\mu\mu}}{N_{B^0\to J/\psi K^*}}\times\frac{\epsilon_{B^0\to J/\psi K^*}}{\epsilon_{B^0_{(s)}\to\pi\pi\mu\mu}}\big(\times\frac{f_s}{f_d}\big)$$ #### Here: - \bullet ϵ selection efficiency. Estimated from MC and data. - $N_{B^0 o J/\psi K^*}$ number of events in normalisation sample. Estimated from the fit of $M_{\pi K \mu \mu}$ spectrum. - $N_{B^0_{(s)}}$ number of signal events. Estimated from the fit of $M_{\pi\pi\mu\mu}$ spectrum. Fit of $J/\psi\pi\pi$ to check the fitting model and extract some shape parameters. ### Basic selection - Stripping v20(r1), B2XMuMu line - Confirm trigger offline - Mass constraint: $M_{\pi\pi} \in [0.5; 1.3] \; GeV +$ vetoed $\psi(1S, 2S)$ for the non-resonant sample Figure: $M_{\pi\pi\mu\mu}$ vs. $M_{\mu\mu}$ with indicated veto regions. ### Mass distribution before optimisation - too much combinatorial Figure: $J/\psi\pi\pi$ mass distribution before Figure: $\pi\pi\mu\mu$ mass distribution before selection selection ### **BDT** selection - Stripping v20(r1), B2XMuMu line - Confirm trigger offline - Mass constraint: $M_{\pi\pi} \in [0.5; 1.3] \; GeV +$ vetoed $\psi(1S, 2S)$ for the non-resonant sample - BDT selection to suppress combinatorial Ilya Komarov (EPFL) # Distribution of invariant mass after BDT. (Do you see a problem?) ### $K - \pi$ misid suppression - B^0 signal region polluted by $B^0 \to K^* \mu^+ \mu^-$ decays from πK misidentification. B_s signal region not affected. - Checked that BDT output is independent from DLL(K- π). Fixing BDT cut (already optimised to suppress combinatorial for $B_s^0 \to f_0 \mu^+ \mu^-$), can optimise the DLL cut alone. $DLL(\pi - K)$ - characteristic of a track, telling if this track is more pion- or more kaon-like. Figure: DLL $(\pi - K)$ vs $M_{\pi\pi\mu\mu}$ ### Remaining $\pi - K$ misld # Other backgrounds: partially reconstructed Three possible partially reconstructed backgrounds. - $B_s \gamma$, leading component $B_s \to \eta^{(\prime)}(\to \pi\pi\gamma)\mu\mu$ - exp. yield ~ 1.5 events - $B_s \pi$, leading component $B_s \to \phi(\to \pi\pi\pi)\mu\mu$ - exp. yield \sim 0.5 events - ullet Overreconstructed events, leading component $B^+ o K(+\pi)\mu\mu$ - exp. yield \sim 5 events - 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q (^ ### Negligible backgrounds #### Other backgrounds were also considered: - $B^0 \to D^-(\to \rho \mu^- X) \mu + X$. Out of fit range. - $B^0 \to D^-(\to \phi(\to \mu\mu)\pi)\pi$ vetoed by dimuon invariant mass - $B^0 \to J/\psi\omega(\to \pi\pi\pi)$). Out of dipion mass range - Double misidentified $B_s^0 o J/\psi f_0$ events are vetoed by dipion mass. - $\Lambda_b^0 \to hh\mu\mu$ -negligeble after selection. - $B_s \to J/\psi(\to \gamma\mu\mu)f_0$ vetoed by dimuon mass. - $B_c o J/\psi \pi \pi \pi$ Included wit floating yield to the resonant fit model. ### Fitting data. Noralisation and check of the model Mass distribution of $B \to J/\psi K\pi$ and $B \to J/\psi \pi\pi$ candidates with fit projections overlaid. ### Signal sample. Mass distributions of the sample with fit projections overlaid, zoomed in the range $5.19\text{--}6.0\,\mathrm{GeV}.$ Ilya Komarov (EPFL) ### Results | | B_s | |-------------------------|---| | N _{candidates} | $55\pm10\pm5$ | | R | $(1.67 \pm 0.29\pm 0.13) imes 10^{-3}$ | | Br | $(8.6 \pm 1.5 \pm 0.7 \pm 0.7 (\mathrm{norm})) \times 10^{-8}$ | | Significance | 7.3σ | | | B_d | |-------------------------|---| | N _{candidates} | $40\pm10\pm3$ | | R | $(0.41 \pm 0.10 \pm 0.03) imes 10^{-3}$ | | Br | $(2.11 \pm 0.51 \pm 0.15 \pm 0.16 (\text{norm})) \times 10^{-8}$ | | Significance | 4.8σ | ◆ロ → ◆部 → ◆注 → 注 り へ ○ # Backup ## Theoretical predictions | $Br(B^0_s o f_0\mu^+\mu^-)$ | Ref. | |---|---------------------| | $\left(5.21^{+3.23}_{-2.06}\right) imes 10^{-7}$ | [ARXIV:0811.2648] | | $\left(9.5^{+3.1}_{-2.6} ight) imes 10^{-8}$ | [ARXIV:1002.2880] | | $(1.67 \pm 0.61) \times 10^{-7}$ | [ARXIV:1002.2880] | | $(0.81 - 2.02) \times 10^{-8}$ | [PhysRevD81,016012] | | $(0.63 - 3.37) \times 10^{-9}$ | [PhysRevD81,016012] | | $Br(B^0\to\rho\mu^+\mu^-)$ | Ref. | |---|---------------------------------------| | $\left(5.0^{+2.1}_{-2.6}\right) \times 10^{-8}$ | [HEP-PH/9706247] and [HEP-PH/9609503] | | $(8.6^{+3.4}_{-4.5}) \times 10^{-8}$ | [HEP-PH/9706247] and [HEP-PH/9609503] | | $\sim 10^{-7}$ | [HEP-PH/9807256] | | 6×10^{-8} | [HEP-PH/9812272] | | $(2.8-8.4)\times10^{-8}$ | [PhysRevD77,014017] | # Selection summary | Variable | Requirement | |-----------------------------|---| | BDT | > 0.25 (2011), > 0.15(2012) | | $\overline{DLL(\pi - K)}$ | > 1 | | $DLL(\pi - \mu)$ | > -1 | | $DLL(\pi-p)$ | > 0 | | $ProbNN(\mu)$ | > 0.25 | | $M_{\pi\pi}$ | $\in [0.5, 1.3] \mathrm{GeV}$ | | $M_{\mu\mu}$ non-resonant | $\in [0.212, 2.796] \cup [3.216, 3.436] \cup [3.806, 5.05] \mathrm{GeV}$ | | $M_{\mu\mu}$ resonant | $\in [2.796,3.216]\mathrm{GeV}$ | | $M_{\pi^+\pi^-\mu^+\mu^-}$ | $\in [5.19,6.99]\mathrm{GeV}$ | | $M_{\pi\leftrightarrow\mu}$ | $ ot\in [3.036, 3.156] \cup [3.625, 3.745] \mathrm{GeV} $ | | $\overline{DLL(K-\pi)_K}$ | > 5 | ### **Efficiencies** | Sample | $arepsilon_{ m acc}(\%)$ | $\varepsilon_{\mathrm{trig}} \ \varepsilon_{\mathrm{pres}} \ \varepsilon_{\mathrm{BDT}}(\%)$ | $arepsilon_{ ext{PID}}$ (%) | Total (%) | |----------------------------|--------------------------|--|--------------------------------|---------------------| | | | 2011 | | | | $B_s^0 o f_0 \mu^+ \mu^-$ | 14.26 ± 0.076 | 5.026 ± 0.033 | 50.345 ± 0.092 | 0.3608 ± 0.0031 | | $B^0 o ho \mu^+ \mu^-$ | 14.49 ± 0.049 | $\textbf{4.211} \pm \textbf{0.015}$ | 48.755 ± 0.05 | 0.2975 ± 0.0015 | | $B^0 o J/\psi K^*$ | 14.87 ± 0.039 | 7.4619 ± 0.0089 | 8.407 ± 0.043 | 0.0933 ± 0.0005 | | | | 2012 | | | | $B_s^0 o f_0 \mu^+ \mu^-$ | 15.48 ± 0.076 | 5.174 ± 0.032 | 46.062 ± 0.096 | 0.3689 ± 0.0030 | | $B^0 o ho\mu^+\mu^-$ | 15.64 ± 0.049 | $\textbf{4.103} \pm \textbf{0.029}$ | 42.813 ± 0.11 | 0.2748 ± 0.0022 | | $B^0 o J/\psi K^*$ | 16.05 ± 0.039 | 6.688 ± 0.027 | $\boldsymbol{9.075 \pm 0.056}$ | 0.0974 ± 0.0008 | - $\varepsilon_{\rm acc}$ geometry efficiency, value and uncertainty extracted from generator statistics. - $\varepsilon_{\rm trig}$ $\varepsilon_{\rm pres}$ $\varepsilon_{\rm BDT}$ selection efficiency, estimated from Monte-Carlo simulation. - \bullet $\varepsilon_{\mathrm{PID}}$ PID selection efficiency, estimated from data and MC sample using PIDCalib package. # Normalisation: Fit of $B^0 \to J/\psi K^*$ | Parameter | 2011 sample | 2012 sample | |--|-----------------------|-----------------| | Yield of $B^0 o J/\psi K^*$ | 10493 ± 110 | 25129 ± 176 | | width of first CB $[\text{GeV}/c^2]$ | 0.01896 = | ± 0.00018 | | ratio of CB widths | 0.741 = | ± 0.044 | | Ratio of CB | 0.741 = | ± 0.015 | | Part.reco'd Argus shapec | -19 ± 11 | | | Part.reco'd Argus starting point $[GeV/c^2]$ | 5.1235 ± 0.0063 | | | mass $[GeV/c^2]$ | 5.28521 ± 0.00022 | | | Combinatorial slope | -5.49 ± 0.75 | -5.77 ± 0.47 | | Yield of partially reconstructed | 349 ± 79 | 911 ± 142 | | Combinatorial yield | 938 ± 119 | 2712 ± 227 | | Yield of $_s \rightarrow J/\psi K^*(892)^0$ | 100 ± 18 | 219 ± 31 | | Yield of $_u \rightarrow J/\psi K^+$ | 48 ± 26 | 131 ± 44 | Table: Results of the fit to the $B^0 \to J/\psi K^*$ data. Yields of $B^0 \to J/\psi K^*$ need to be corrected in order to substract S-wave. *P*-wave is $\sim 96\%$ in our $M_{K\pi}$ mass range according to [PRD 88, 052002 (2013)] anuary 22, 2015 20 / 31 ### Fit of the $\mu\mu\pi\pi$ sample - Fit range: 5.19 6.99 *GeV* - Signal shapes: Double crystal ball with tail parameters fixed from MC and common width parameter. • Signal yields: $$N_{signal}^{year} = N_{B_d \to J/\psi K^*}^{year} \times \frac{Br(signal) \times \varepsilon_{signal}^{year}}{Br(B_d \to J/\psi K^*) \times \varepsilon_{B_d \to J/\psi K^*}^{year}} \times (\frac{f_s}{f_d})$$ - Combinatorial component is described by exponent and is free - Partially reconstructed componants are fitted with MC-defined argus shape with yields, fixed from expectations. - MISID shapes are fixed from data. - \bullet $M_{\rm misid}$ is free, MISID yield is under gaussian constraint. ◆ロ > ◆部 > ◆き > ◆き > き り < ②</p> # Fit of the $\mu\mu\pi\pi$ sample | Parameter | 2011 sample | 2012 sample | |--|-----------------------|------------------------| | $\overline{\mathcal{R}_d}$ ' | (0.387 ± 0.0) | $(093) \times 10^{-3}$ | | \mathcal{R}_s ' | (0.404 ± 0.0) | $(071) \times 10^{-3}$ | | $N(B^0_s o J/\psi f_0)$ | 2675 ± 59 | 6218 ± 92 | | $N(B^0 o J/\psi ho)$ | 1980 ± 67 | 4425 ± 100 | | $M(B^0) [\operatorname{GeV}/c^2]$ | 5.28459 ± 0.00039 | 5.28438 ± 0.00027 | | $M_{ m misid}~[{ m GeV}/c^2]$ | 5.2036 ± 0.0027 | 5.2141 ± 0.0018 | | signal width $[/c^2]$ | 17.96 ± 0.35 | 19.86 ± 0.35 | | $N_{ m comb}$ resonant | 796 ± 70 | 1895 ± 104 | | slope comb. resonant $[\mathrm{GeV}^{-1}]$ | -4.31 ± 0.37 | -3.83 ± 0.19 | | $\mathcal{N}_{\mathrm{comb}}$ non-resonant | 56.2 ± 9.2 | 172 ± 16 | | slope comb. non-resonant $[{ m GeV}^{-1}]$ | -1.22 ± 0.36 | -1.44 ± 0.21 | | $N(B_c^+ o J\!/\!\psi\pi^+\pi^-\pi^+)$ | 167 ± 25 | 361 ± 39 | | $N(B^0 o J/\psi K^*)$ | 762 ± 20 | 1858 ± 34 | | ${\it N}({\sf B}^0 o{\it K}^*\mu^+\mu^-)$ | 7.1 ± 1.0 | 15.8 ± 1.5 | Table: Results of the fit to the data. ### 1D Likelihood profile $$\sigma(B_s) = 7.3$$ $$\sigma(B_d) = 4.8$$ Likelihood profile of R($B_s^0 \to f_0 \mu^+ \mu^-$) (left) and R($B^0 \to \rho \mu^+ \mu^-$) (right), where R is $Br(B_{(s)}^0 \to \pi \pi \mu \mu)/Br(B^0 \to J/\psi K^*)$ The red line corresponds to the profile-likelihood, where, for each point probed in R, all other parameters are floating; the blue line corresponds to the likelihood scan along to R, where all the others parameters are fixed to their values at the minimum of the likelihood. ◆ロ → ◆ □ → ◆ □ → ○ □ → ○ ○ ○ 23 / 31 ### 2D Likelihood profiles Figure: Likelihood levels (1..5 σ) of R($B_s^0 \to f_0 \mu^+ \mu^-$) and R($B^0 \to \rho \mu^+ \mu^-$). 4D + 4B + 4B + B + 990 ### Fit checks: Fit variations #### As an additional check with alternative fit models extending fit range ([5.0-7.0] GeV) fixing exponent from the right sideband ([5.5-6.97] GeV) Combinatorial function was described by line. ### Fit checks: Fit variations | | default fit | Extended fit range | fixing combinatorial | Linear combinatorial | |---------------------------------|-------------------|--------------------|----------------------|----------------------| | $\mathcal{R}_s(\times 10^{-3})$ | 1.55 ± 0.26 | 1.51 ± 0.26 | 1.59 ± 0.25 | 1.75 ±0.26 | | $\mathcal{R}_d(imes 10^{-3})$ | 0.329 ± 0.072 | 0.318 ± 0.072 | 0.345 ± 0.068 | 0.406 ± 0.072 | Table: Values of \mathcal{R}_s and \mathcal{R}_d from the fit to data in different configurations to check the stability of the results. # Systematics Main sources of systematics: - Yield of $B^0 o J/\psi K^*$ signal - Statistics and dependence on signal shape - Efficiency - Statistics of MC sample - Dependence on model (compared with efficiency, of "dummy" model) - Difference with data defined for BDT and trigger (TISTOS) efficiencies. Found from comparision of efficiency found on MC with efficiency found on reference sample. - Signal shapes - Since shapes were fixed from MC, we had to consider the effect from "wrong shape". In all cases, uncertinty of parameter was transferred to the systematics in two steps: - Perform set of fits with examined parameter varied within error - ullet Define systematics as RMS of the distribution of obtained R_s and R_d # Systematics | Source | $\sigma(\mathcal{R}_s)$ | $\sigma(\mathcal{R}_d)$ | |--|-------------------------|-------------------------| | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 1 | 4 | | Partially- and over- rec. backg. | 1 | 4 | | Signal shapes | 7 | 14 | | Efficiencies | 19 | 13 | | Yields of $B^0 o J/\psi K^*$ | 18 | 13 | | S-wave in $B^0 o J/\psi K^*$ | 6 | 4 | | f_s/f_d | 32 | _ | | total | 43 | 26 | | | | | Table: Systematic uncertainties of \mathcal{R}_s and \mathcal{R}_d relative to their statistical uncertainties. ### Fit checks: Toys Three toy datasets were generated using fitting PDF: - "Default" values of generation parameters as ones from fit to data. - "No Bd" default, but R_d set to 0 - "No Bs" default, but R_s set to 0 | Parameter | Gen. value | Mean fit value | Mean fit error | Pull mean | Pull RMS | s _{stat} | |-----------------|------------|----------------|----------------|--------------------|----------|-------------------| | \mathcal{R}_s | 1.132 | 1.126 | 0.196 | -0.076 ± 0.012 | 0.98 | 7.5 | | \mathcal{R}_d | 0.292 | 0.294 | 0.065 | -0.019 ± 0.012 | 0.98 | 5.4 | | \mathcal{R}_s | 0.0 | -0.009 | 0.099 | -0.227 ± 0.014 | 1.14 | 0.7 | | \mathcal{R}_d | 0.292 | 0.284 | 0.064 | -0.173 ± 0.012 | 1.00 | 5.3 | | \mathcal{R}_s | 1.132 | 1.118 | 0.195 | -0.118 ± 0.012 | 0.97 | 7.5 | | \mathcal{R}_d | 0.0 | -0.011 | 0.041 | -0.377 ± 0.014 | 1.15 | 8.0 | Table: Results of the pseudo-experiments. The second column report the values used in the generation of the pseudo-experiments for \mathcal{R}_s and \mathcal{R}_d ; all other parameters are generated with values close to the ones found in the fit to data, see Tab. 22. # Fit checks: Toys ("As is" parameter distributions) ### Significance checks