Search for long-living scalars in $B^+ \rightarrow \chi (\rightarrow \mu^+ \mu^-) + K^+$ decays at LHCb

Andrea Mauri

University of Zurich

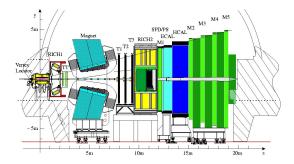
CHIPP winter school, Grindelwald, 18-23 January 2015

Zürich[™]

Contents

- $1. \ {\sf Introduction}$
 - $\circ~$ the LHCb experiment
- 2. Theoretical motivation
 - $\circ~$ properties of the model
- 3. Analysis
 - strategy
 - experimental results
- 4. Conclusions

Introduction

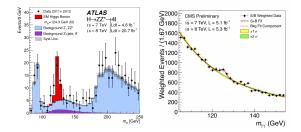

 $1. \ \mbox{LHCb}$ is a forward spectrometer placed at \mbox{LHC}

Introduction: the detector

1. LHCb is a forward spectrometer placed at LHC

- $\circ~$ Pseudorapidity range: 2 $<\eta<$ 4 ~
- $\circ~$ focused on the study of b and c decays
- $\circ~3~{\rm fb^{-1}}$ of data collected in 2011 and 2012

Introduction: LHCb physics


2. LHCb results:

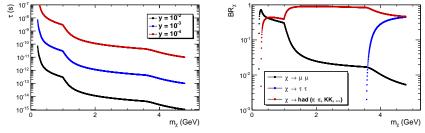
- many of the most up-to-date SM measurements ($B_s \rightarrow \mu\mu$, $B \rightarrow K^*\mu\mu$, CP violation, lepton universality, ect.)
- \circ also able to set limits on new physics (LFV, very rare B decay, ect.)

Theoretical motivation

A Higgs-like Boson has been discovered!

- It is the first fundamental scalar particle in nature
- Is there still room for fundamental scalars?

Theoretical motivation

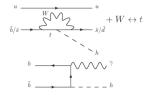

- Some models proposed the existance of a new scalar that mix with the SM Higgs:
 - M. Winkler et al., Constraints on light mediators: confronting dark matter searches with B physics, arXiv:1310.6752;
 - J. Clarke et al., Phenomenology of a very light scalar mixing with the SM Higgs, arXiv:1310.8042
 - F. Bezrukov et al., Light inflaton after LHC8 and WMAP9 resultsarXiv:1303.4395v1
- The new scalar (χ) could have $m_{\chi} < 5$ GeV

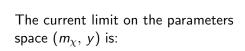
$$\left(\begin{array}{c} H\\ \chi\end{array}\right) = \left(\begin{array}{c} \cos\rho & -\sin\rho\\ \sin\rho & \cos\rho\end{array}\right) \left(\begin{array}{c} \phi_0'\\ S'\end{array}\right)$$

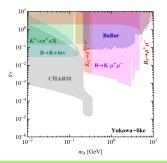
 $y = \sin \rho$ is the coupling parameter to the Higgs

Properties of the new scalar χ

- All the coupling to the SM particles are proportional to y^2
 - $\circ~$ production cross section
 - partial width
- The branching fractions do not depend on y^2
- The lifetime is inversely proportional to y^2

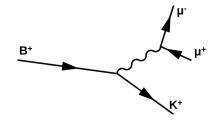



The case with sin $\rho = 1$ corresponds to a SM Higgs with mass m_{χ}


Production mechanism and current limit

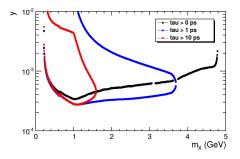
Produced at LHC through meson decays (if kinematically allowed):

- $K \to \chi \pi$
- B $ightarrow \chi$ K^(*)
- $\Upsilon \to \chi \, \gamma$



Strategy of the analysis

- Long living particle
 - from B decay
 - di-muon displaced vertex
 - single track associated to the B-decay

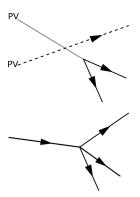


How much displaced?

Sensitivity preliminary study

We may want to cut on the lifetime of the reconstructed χ candidate

- LHCb acceptance:
- decay inside the VELO • $L_{min} = 0, L_{max} = 50 \text{ cm}$
- 3 fb $^{-1} \sim 10^{10}$ B mesons
- efficiencies studied with MC
- combinatorial background extrapolated from the sideband
- SM $B \rightarrow K \mu \mu$ (affects only $\tau_{cut} = 0$)



Not a simple choise due to the restriction of the parameter space

Background

Different sources of background:

- 1. Combinatorial background
 - does not peak in the signal region [B window]
- 2. Background from B decay:
 - $\circ B^+ \to K^+ J/\psi, [...] \\ \circ SM B^+ \to K^+ \mu^+ \mu^-$

Signal VS background main difference: displaced di-muon vertex! All the most discriminant variables are combined by a BDT algorithm.

12 of 14

Normalization channel: $B^0 \rightarrow J/\psi K_S$

As usual in LHCb analysis, we require a control channel to normalize the signal yield:

- Same topology (displaced vertex) except for the final number of tracks
- well known branching ratio: $BR(B^0 \rightarrow (J/\psi \rightarrow \mu\mu)(K_S^0 \rightarrow \pi\pi)) = 1.8 \cdot 10^{-5}$
- $\sim 28.5 \cdot 10^3$ events observed at LHCb

Data-driven correction of the MC efficiency:

$$\varepsilon^{\rm sig} = \varepsilon_{\rm MC}^{\rm sig} \frac{\varepsilon_{\rm DATA}^{\rm norm}}{\varepsilon_{\rm MC}^{\rm norm}}$$

13 of 14

Summary

- This has been the work for my first 6 months of PhD
- There's still a long way to go...
 - $\circ~$ This is a blind analysis
 - $\circ \ \tau_{\it cut}$ and BDT selection still to be optimized
 - proper background evaluation
- Conclusions
 - $\circ\;$ We expect to reduce the limit from B-factories of one order of magnitude
 - $\circ~$ The analysis covers all the parameter space predicted by the inflaton model