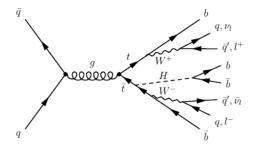


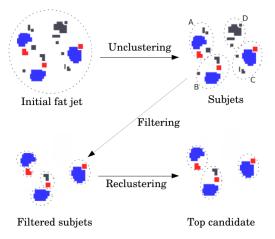
# Top Tagging and Matrix Element Method for ttH/tt+jets separation at 13 TeV


Maren Meinhard

CHIPP Winter School - January 23, 2015

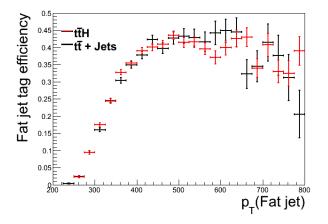
# Aim of the $t\bar{t}H, H \rightarrow b\bar{b}$ analysis

 $\Rightarrow$  Measurement of Yukawa coupling between Higgs and top


 $\Rightarrow$  Study the  $t\bar{t}H$  final state in the semi-leptonic channel



Increase separation power between  $t\bar{t}H$  and  $t\bar{t} + Jets$  by optimization of event categories and inclusion of jet substructure in the input of the Matrix Element analysis


# MultiR HEPTopTagger (MultiR HTT)

Input : fat jet constructed with Cambridge-Aachen (CA) algorithm with R=1.5





## MultiR HTT tagging efficiency



- Low efficiency for small p<sub>T</sub> fat jets
- Efficiency as a function of fat jet p<sub>T</sub> agrees for ttH and tt+jets (relevant for top tagging in data)

## The Matrix Element Method (MEM)

Probability density for an event **x** and observables  $\alpha$ :

$$P(\mathbf{x}|oldsymbol{lpha}) = rac{1}{\sigma_lpha}\int d\Phi(\mathbf{y}) \; |M_lpha|^2(\mathbf{y}) \; W(\mathbf{x},\mathbf{y})$$

where

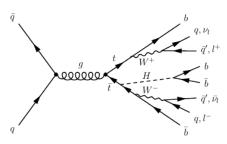
- $\sigma_{\alpha}$  is the total cross section
- dΦ(y) is the phase-space measure
- $|M_{\alpha}|^2(\mathbf{y})$  is the LO matrix element
- W(x, y) is the transfer function (probability to obtain a detector response y for an event x)

Define ratio between  $P(signal | \alpha)$  and  $P(bkg | \alpha)$  as a one dimensional discriminating variable

#### Definition of some MEM decision variables

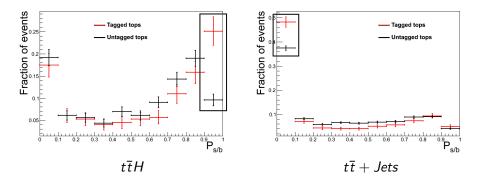
$$P_{s/b} = rac{P(\mathbf{s}|m{lpha})}{P(\mathbf{s}|m{lpha}) + P(\mathbf{b}|m{lpha})}$$

$$\frac{S}{B} = \frac{s_1 \cdot \# \text{ signal events with } P_{s/b} > 0.65}{s_2 \cdot \# \text{ bkg. events with } P_{s/b} > 0.65}$$


$$\frac{S}{\sqrt{B}} = \frac{s_1 \cdot \# \text{ signal events with } P_{s/b} > 0.65}{\sqrt{s_2 \cdot \# \text{ bkg. events with } P_{s/b} > 0.65}}$$

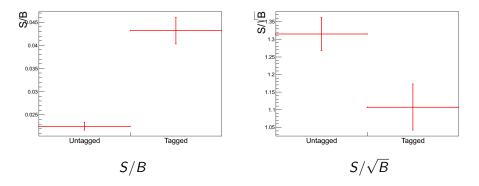
where  $-s_i$  are factors that correct for differences in the number of generated events in both samples and  $-P(\mathbf{s}/\mathbf{b}|\alpha)$  is the probability to have an outcome  $\alpha$ for a signal/background event

### Event selection


- One single lepton with  $p_T > 30 \text{ GeV}$
- $N_{jet} \ge 6$  with  $p_T > 30 \text{ GeV}$ and  $|\eta| < 2.5$
- "W tag" : mass of jets produced by decay in

-[60, 100] GeV if 
$$N_{jet} = 6$$
 or  
-[72, 94] GeV if  $N_{jet} > 6$ 




 $\Rightarrow$  W decay fully reconstructed

# ${\cal P}_{{\it s}/{\it b}}$ distribution for tagged and untagged events



Top tagging increases the separation between signal and background events

Correlation MEM - MultiR HTT: S/B and  $S/\sqrt{B}$  at  $\mathcal{L}=19.04\,\mathrm{fb}^{-1}$ 



 $\frac{S}{B}$  is increased by a factor 2,  $\frac{S}{\sqrt{B}}$  decreases when using top tagging

### Conclusions and next steps

#### Summary

- Tagging top quarks in tt
   *t H* and tt
   *t + Jets* events leads to
   better separation between signal and background events
- This is due to a better jet reconstruction for "tagged" events
- Improves S/B ratio by almost a factor two

#### Next steps

- Optimize event categories to increase the separation power between signal and background events
- Include events that are not fully reconstructed
- Implement Higgs tagger to further improve the separation

#### Backup

Cambridge-Aachen (CA) jet algorithm

Define distance between input objects *i* and *j*:

$$d_{ij} = rac{\Delta R_{ij}^2}{R^2}$$

with

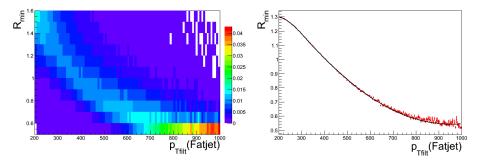
- $\Delta R_{ij}^2 = (\eta_i \eta_j)^2 + (\phi_i \phi_j)^2$ , the angular distance between two input objects
- $\eta$ , the pseudo-rapidity
- $\phi$ , the azimuthal angle

Recombine closest jets until  $\Delta R_{ij} > R$  for all input objects, where R is a parameter of the algorithm

### MultiR HTT WP and Data Samples

#### MultiR HTT Working Point (WP)

- CA, R=1.5 fat jets
- $100 \,{
  m GeV} < m_t(R_{min}) < 225 \,{
  m GeV}$
- f<sub>W</sub>(R<sub>min</sub>) <0.19
- Δ*R<sub>min</sub>* <0.5
- *p*<sub>T</sub> >200 GeV

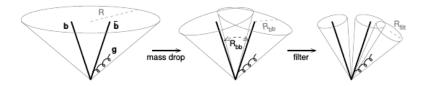

#### Available samples (CSA 14)

| Sample                 | Event generator | N. generated events | PU       |
|------------------------|-----------------|---------------------|----------|
| tīH                    | Pythia 6        | 97520               | PU20bx25 |
| $t\overline{t} + Jets$ | Madgraph        | 25474122            | PU20bx25 |

MultiR HTT -  $\Delta R_{min}$ 

 $R_{min} =$  smallest cone size where mass drop is less than 20%

At higher  $p_T$ , top decay products are very collimated  $\Rightarrow R_{min}$  decreases with  $p_T$ 




Define

$$\Delta R_{min} = R_{min} - R_{min,fit}$$

# Higgs tagging

Similar to top tagging, starts with fat jet j constructed with CA Algorithm



- Undo last algorithm clustering step so that  $m_{j1} > m_{j2}$
- If  $m_{j1} < \mu m_{j2}$  (significant mass drop) and the splitting is relatively symmetric, keep  $j_1$ ,  $j_2$
- j is a Higgs candidate if both  $j_1$  and  $j_2$  are b-tagged

[J. Butterworth et al.]