ETH zürich

Small Animal Fast Insert for MRI

CHIPP Winter School 2015

Introduction Principle of PET

- PET = positron emission tomography
- Positron emitting tracer
 - e.g. F-18 ($T_{1/2} = 109.8 \text{ min}$), O-15 ($T_{1/2} = 122.2 \text{ s}$)
 - electron-positron annihilation
 - Detect 511 keV back-to-back gammas in coincidence
- Wanted: tracer distribution ("Image")

Image by Jens Maus, public domain

Noisy Projections → Reconstruction → Image + Noise

$$y_i$$

$$P_{ii}$$

$$\lambda_i$$

SAFIR Small Animal Fast Insert for MRI

- Simultaneous acquisition with MRI
 PET insert for preclinical Bruker BioSpin 70/30
- Detect fast biological processes
 Temporal Resolution / Acquisition times ~ seconds
 (Extremly short, usually ~ minutes)
- Increase tracer activity up to 500 MBq (~10 times more than usual) to make up for short acquisition time frames
- e.g. locate increased activity in stimulated mouse cortex (2 × 2 × 2 mm³)
 Spatial Resolution < 1.5 mm FWHM

Mechanical Design Schematic Views

Sensors

- LYSO crystals (e.g. SG PreLude 420)
 - Light yield: 32000 photons / MeV
 - Peak emission @ 420 nm
 - 41 ns decay time
- SiPMs (e.g. Hamamatsu "MPPC") ~
 - Multiple APD cells, operated in Geiger-mode, connected parallely
 - Peak sensitivity @ 450 nm
 - MR-compatible
- **Electronics**
 - Amplification
 - Shaping
 - Discrimination
 - Digitization

XOR

Energy Spectra And Calibration

ADC Counts vs. Energy

Simulation Spatial Resolution

- Evaluation of scanner geometries through simulation
 - Spatial Resolution
 - Sensitivity
 - Scatter fraction
 - Signal-to-noise ratio (a.k.a. NECR)
- e.g. Spatial Resolution
 - Point-like source of Na-22 at different radial distances from center
 - Reconstruction (FBP)
 - FWHM and FWTM around maximum pixel to characterize spatial resolution
 - Along three perpendicular axes (radial, tangential, axial)

Spatial resolution

Crystal size: $2.1 \times 2.1 \times 12 \text{ mm}^3$

High-rate Capability Of Read-Out ASIC e.g. TOFPET

- Syringe with F-18
- Single SiPM connected to TOFPET ASIC (no limitation by output bandwith)
- Random rate measured linear up to $\sim 70 \text{ kHz}$

Summary

- Offers unprecedented biomedical research opportunities
- Challenging...
 - Mechanical constraint (insert)
 - Maintain state-of-the-art spatial resolution
 - Fast sensors
 - High-rate capable electronics (tens of kHz / channel)
 - Readout bandwidth
 - DAQ (~GB/s)
- ...but feasible

Backup Image Reconstruction

- Noisy Projections → Reconstruction → Image + Noise
- Analytical (Filtered Back Projection)
 - Tracer distribution in 2D: f(x, y), measure line integrals along γ
 - Ideal Measurement = Radon transform $(Rf)(s, \varphi) = \int_{\gamma} f(x, y)$
 - Back-project with Central Section Theorem + Fourier transform (CST relates 1D-FT of projection to 2D-FT of distribution)
- Iterative (ML-EM)
 - Maximum-Likelihood Expectation-Maximization
 - Iteratively find image λ_j which would "best" match measurements y_i given a system matrix P_{ij} .

Can account for detection efficiencies, scanner geometry, attenuation,...

commons.wikimedia.org, CC BY-SA 3.0

Backup Timing with STiCv2

CTR

- Two LYSO crystals $1.5 \times 1.5 \times 12 \text{ mm}^3$
- Two Hamamatsu SiPM $(3 \times 3 \text{ mm}^2)$
- Connected to STiCv2 ASIC
- Time difference between respective channels with events at photopeak
- $CTR(\sigma) = 2.093 * 51 ps = 106.7 ps$
- CTR(FWHM) = 256.0 ps

Backup TOFPET: Prospective Rate Capability Improved Output Bandwith

Enhanced Data TX, per (2.0 mm)²

Account for:

Enhanced Data TX, per (1.5 mm)2

- Reduced Output Bandwidth (factor 4)
- Smaller crystal size (scales with surface per channel)
- For 500 MBq, larger than (1.5mm)² not feasible