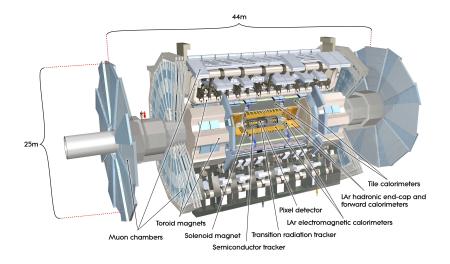
ATLAS Rx Pixels plugins

Geoffrey Mullier CHIPP Winter school 2015

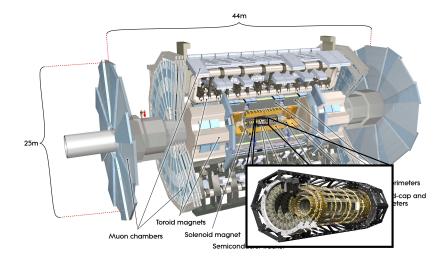
Albert Einstein Center / Laboratory for High Energy Physics

January 23, 2015

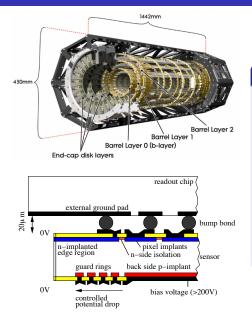

Introduction ATLAS

- Pixels
- IBL/Pixels Readoutcontext
- 3 Plugins
 - Presentation

Project outlook



ATLAS structure



ATLAS structure

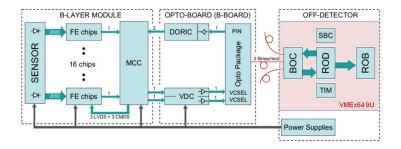
Pixel detectors

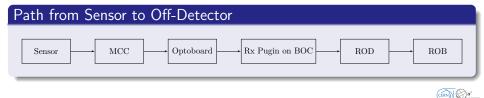
Characteristics & usage

- Semi conductor sensors
- Small sized pixels (\approx 50 μ m \times 300 μ m)
- 3 layers (pprox 4, 10, 13 cm)
- High granularity ightarrow spatial resolution pprox 10 $\mu{\rm m}$
- Important for vertex identification and track reconstruction

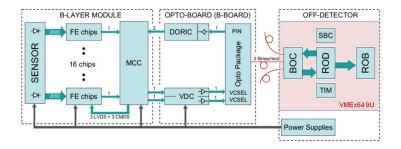
• NEW : IBL

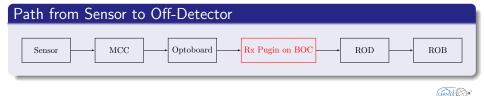
G.Mullier (AEC/LHEP)



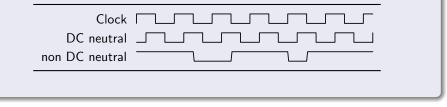

Insertable **B** Layer

- New layer inside the existing pixel sensor (at \approx 3 cm)
- Smaller sized pixels (\approx 50 μ m \times 250 μ m)
- Important for High luminosity phases
 - Vertex reconstruction
 - Balancing dead channels




Readout Pixels/IBL

Readout Pixels/IBL



Readout IBL / Pixels

DC neutrality

- A signal is said DC neutral if there is no DC component to the signal in other terms $\lim_{T\to\infty} \frac{1}{T} \int_0^T V dt = 0$
- The IBL use a DC neutral encoding of data (8b10b)
- The older hardware use a non DC neutral encoding and DC neutral but lower bandwidth (Manchester)

Tx Plugins

None

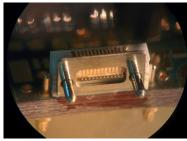
Rx Plugins

- New SNAP12 plugins don't like non DC neutral signals
- Old FE-I3/MCC, that cannot be replaced, send a non DC neutral signals
- We want to be able to use new BOC design which is all around better
- Cannot produce old ASIC anymore
- Need to design a new Plugin that doesn't mind non DC neutral input

Tx Plugins

None

Rx Plugins


- New SNAP12 plugins don't like non DC neutral signals
- Old FE-I3/MCC, that cannot be replaced, send a non DC neutral signals
- We want to be able to use new BOC design which is all around better
- Cannot produce old ASIC anymore
- Need to design a new Plugin that doesn't mind non DC neutral input

Rx Board philosophy

Rx Board philosophy

Pull up / Amplification ?

- Discrete Component
- ASIC

Pull up / Amplification ?

Discrete Component
ASIC
Test them to find it out!

Electrically

- Verify the characteristics on its own by signal injection onto the electronics
- Measure directly on BOC (Back Of Crate Card)

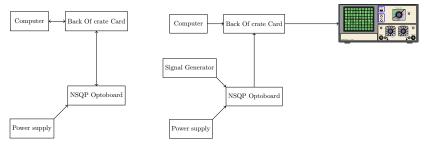
Do they actually transmit correctly?

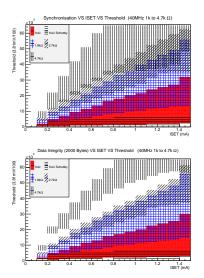
- Loopback test using the BOC software
- Bit error rate testing (BERT) using the BOC

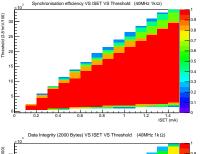
Electrically

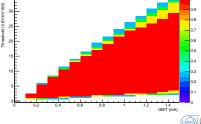
- Verify the characteristics on its own by signal injection onto the electronics
- Measure directly on BOC (Back Of Crate Card)

Do they actually transmit correctly?


- Loopback test using the BOC software
- Bit error rate testing (BERT) using the BOC


Principle


- Verify the range in which the BOC recognises the incoming signals
- Measure erros from memory of the BOC (FiFo)
- Measure signal on BOC from pattern signal generator



Preliminary testing of the discrete solution

Encouraging after first testing but...

And the ASIC?

Encouraging after first testing but...

Not so far away in space time

- Full test of both "almost" final version of respective designs
- Aeging test of both designs

Further down the road

- Production and testing of 300 plugins
- Installation of said 300 plugins

Thanks for listening

