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Abstract
These notes represent a summary of three lectures on flavour and CP viola-
tion, given at the CERN’s European School of High Energy Physics in 2014.
They cover flavour physics within the standard model, phenomenology of CP
violation in meson mixing and decays, as well as constraints of flavour ob-
servables on physics beyond the standard model. In preparing the lectures
(and consequently this summary) I drew heavily from several existing excel-
lent and exhaustive sets of lecture notes and reviews on flavour physics and CP
violation [1]. The reader is encouraged to consult those as well as the original
literature for a more detailed study.

1 What is flavour?
In the standard model (SM) the basic constituents of matter are excitations of fermionic fields with spin
1/2. In this context matter flavours refers to several copies of the same gauge representation. Under the
unbroken SM gauge group SU(3)c × U(1)EM these are

– up-type quarks: (3)2/3 : u, c, t,
– down-type quarks: (3)−1/3 : d, s, b,
– chrged leptons: (1)−1 : e, µ, τ ,
– neutrinos: (1)0 : ν1, ν2, ν3,

where the colour representations are given in the brackets, while the electric charges are written as
subscripts. The different flavours of the same gauge representation differ only in their masses.

Ordinary matter is essentially made up of the first generation: u and d quarks are bound within
protons and neutrons, while the electrons form atoms; finally “electron neutrinos", which are an admix-
ture of ν1,2,3, are produced in reactions inside stars. Second and third generation families are produced
only in high-energy particle collisions. They all decay via weak interactions into first generation parti-
cles. One of the big open questions in fundamental physics is why there are thee almost identical replicas
of quarks and leptons and which is the origin of their different masses?

Flavour physics refers to interactions that distinguish between flavours. Within the SM these are
weak and Yukawa (Higgs boson) interactions.

Flavour parameters are those that carry flavour indices. Within the SM these are the nine masses
of charged fermions and four mixing parameters (three angles and one complex CP violating phase).1

Flavour universal interactions are those with couplings proportional to the identity in flavour
space. Within the SM these are strong and electromagnetic interactions (and also weak interactions in
the so-called interactions basis, see below). Such interactions are sometimes also called flavour blind.

Flavour diagonal interactions are those whose couplings are diagonal (in the matter mass basis),
but not necessarily universal. Within the SM these are the Yukawa interactions of the Higgs boson.

1Adding Majorana mass terms for neutrinos introduces three additional neutrino masses plus six mixing parameters (three
mixing angles and three phases).
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What is flavour?
• Ordinary matter essentially first generation:

• u and d quarks bound within protons & neutrons, 

• electrons form atoms; 

• “electron neutrinos", (admixture of ν1,2,3) are 
produced in reactions inside stars. 

• 2nd and 3rd generation families decay via weak 
interactions into first generation particles. 

Why there are thee almost identical replicas of quarks and 
leptons and which is the origin of their different masses?
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What is flavour?
• Flavour physics

• Within SM: weak and Yukawa interactions.

• Flavour parameters

• Within SM: 9 masses of charged fermions          
& 4 mixing parameters (3 angles + 1 phase)

• Flavour universal (flavour blind)

• Within SM: QCD & QED 

• Flavour diagonal

• Within SM: Yukawa interaction
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What is flavour?
• Flavour changing processes

• Flavour changing charged currents: 

• Within SM:  single W exchange at tree-level

• Flavour changing neutral currents:

• Within SM: higher orders in weak expansion
(loops) - often highly suppressed

Flavour changing processes are those where the initial and final flavour-numbers are different (a
flavour number is the number of particles with a certain flavour minus the number of anti-particles of
the same flavour). We can further specify flavour changing charged currents which involve both up-
and down-type quark flavours or both charged lepton and neutrino flavours. Examples of such processes
are the muon decay µ− → e−νiν̄j or the muonic charged kaon decay K− → µ−ν̄i (which corresponds
to the quark-level transition sū → µ−ν̄i). Within the SM such processes are mediated already by a
single W exchange at the tree level (the amplitudes being proportional to the Fermi constant GF ). On
the other hand, flavour changing neutral currents (FCNCs) involve either up- or down- type flavours
but not both; and/or either charged lepton flavours or neutrino flavours but not both. Examples of
such processes are the radiative muon decay µ− → e−γ and the muonic decays of the neutral kaons,
KL → µ+µ− (sd̄ → µ+µ− at the quark level). Within the SM these processes occur at higher orders in
the weak expansion (i.e. via loops) and are often highly suppressed. In connection with flavour changing
interactions, one often speaks also of flavour violation.

1.1 Why is flavour interesting?
Flavour physics can discover new physics (NP) or probe it before it is directly observed in high-energy
experiments. Historical examples of this include:

– The smallness of the ratio Γ(KL → µ+µ−)/Γ(K− → µ−ν̄i) lead to the prediction of the charmed
quark.

– Furthermore, the measurement of the mass difference between the two neutral kaons ∆mK ≡
mKL

−mKS
lead to the prediction of the charm quark mass.

– Similarly, the mass difference between the two neutral B mesons ∆mB ≡ mB0
H

−mB0
L

inferred
a prediction of the top quark mass almost two decades before top quarks (or more precisely, their
decay products) were directly observed in experiments.

– Finally, the observation of the CP violating decay KL → π+π− (i.e the measurement of �K) lead
to the prediction of the third generation of matter.

CP violation: Within the SM there is a single CP violating parameter determining the amount of
CP violation in all flavour changing processes. Successful baryogenesis would require new CP violating
sources.

Solutions of the electroweak (EW) hierarchy problem (in the form of a quadratic sensitivity of
the EW scale to UV physics) require NP to appear at or below the TeV scale. On the other hand, such
NP with a generic flavour structure would predict FCNCs orders of magnitude above the observed rates.
Conversely, flavour physics can probe NP scales up to O(105 TeV). The resulting NP flavour puzzle
refers to the fact that NP at the TeV scale needs to exhibit approximate flavour symmetries.

The SM flavour parameters are both hierarchical (i.e. mu � mc � mt) and mostly very small
(mf �=t � mW,Z,h) . The question whether this points to some unknown underlying flavour dynamics is
sometimes called the SM flavour puzzle.

2 Flavour in the standard model
Any (local) quantum field theory model is specified by both (i) symmetries and the pattern of their
spontaneous breaking; as well as (ii) representations of fermions and scalars. The SM Lagrangian (LSM)
is thus completely determined by specifying the local (gauge) symmetry GSM

local = SU(3)c × SU(2)L ×
U(1)Y which is spontaneously broken to GSM

local → SU(3)c × U(1)EM ; plus the relevant fermionic

Qi
L ∼ (3, 2)1/6 , U i

R ∼ (3, 1)2/3 , Di
R ∼ (3, 1)−1/3 , Li

L ∼ (1, 2)−1/2 , (1)
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Why is flavour 
interesting?

•                       ⇒ prediction of charm quark

•                             ⇒ prediction of charm mass

•                   (εK) ⇒ prediction of 3rd generation

• CP Violation

• Within SM: single CP violating parameter
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Γ(K− → µ−ν̄i)

∆mK ≡ mKL −mKS
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Why is flavour 
interesting?

• Electroweak (EW) hierarchy problem

• requires NP ≤ 1 TeV

• if generic flavour structure ⇒ FCNCs

• flavour probes NP scales ≤105 TeV
NP flavour puzzle
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Why is flavour 
interesting?

• Electroweak (EW) hierarchy problem

• requires NP ≤ 1 TeV

• if generic flavour structure ⇒ FCNCs

• flavour probes NP scales ≤105 TeV

• SM flavour parameters

• hierarchical: mu << mc << mt

• most are small: mf≠t << mW,Z

NP flavour puzzle

SM flavour puzzle
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Flavour in SM

i) Symmetries & their spontaneous breaking

ii) Representations of fermions & scalars

L =?
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Flavour in SM

i) Symmetries & their spontaneous breaking

ii) Representations of fermions & scalars

i)  

ii)

L =?

GSM
local = SU(3)c × SU(2)L × U(1)Y

GSM
local → SU(3)c × U(1)EM

Qi
L ∼ (3, 2)1/6 , U i

R ∼ (3, 1)2/3 ,

Di
R ∼ (3, 1)−1/3 , Li

L ∼ (1, 2)−1/2 ,

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV ,



Flavour in SM

• simple and symmetric (g, g’, gs)

• EWSB, 2 params

• SM flavour dynamics, flavour parameters

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV , (2)

representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, �. . .� denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g�) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM
Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)

†(Dµφ) +
�

i,j=1,2,3

�

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

�

a=1,...,8

Ga
µνG

a,µν − 1

4

�

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsGa

µL
a + igW b

µT
b + ig�BµY ,

where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)
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broken spontanouesly by �φ0� . On the other hand U(1)PQ can be defined such that only the Higgs and
Di

R, E
i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of Ei
R alone and is thus broken by the charged

lepton Yukawas.
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2,φ3 + iφ4)
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This approximate symmetry of the SM is sometimes called the custodial symmetry.
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Interaction basis

• Exercise: compute embedding of U(1)5 into U(3)5 
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Interaction basis

• in general flavour dependent (unless YF ∝ Iij) & CPV

The Yukawa Lagrangian of the SM

−L
SM
Yukawa = Y ij

d Q̄i
LφD

j
R + Y ij

u Q̄i
Lφ̃U

j
R + Y ij

e L̄iφEj
R + h.c. , (7)

where φ̃ = iσ2φ, is in general flavour dependent (if Yf /∝ I) and CP violating. The pattern of explicit

GSM
flavour breaking by Yf �= 0 is as follows:

– U(1)E is broken by Ye �= 0 ,

– U(1)PQ is broken by Yu · Yd �= 0 and Yu · Ye �= 0 ,

– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,

– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,

– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] �= 0 down to

U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM

4
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– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.
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We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three
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Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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. (8)
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1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.
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4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .
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U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases
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2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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– U(1)E is broken by Ye �= 0 ,

– U(1)PQ is broken by Yu · Yd �= 0 and Yu · Ye �= 0 ,

– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,

– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,

– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] �= 0 down to

U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM

4

(YU & YD together break remaining U(1) factors to U(1)B)

GSM
global(Yf �= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ
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Interaction basis
• Flavour physics: interactions which break               

are flavour violating

• Spurion analysis: 

• parameter counting

• identification of suppression factors

• idea of Minimal Flavour Violation 

The Yukawa Lagrangian of the SM
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Yu ∼ (3, 3̄, 1)SU(3)3q
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Counting SM quark 
flavour parameters

• global symmetry group Gf with Ntotal generators

• Gf → Hf with Ntotal − Nbroken generators

• Nphysical = Ngeneral − Nbroken 

•
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Counting SM quark 
flavour parameters

• global symmetry group Gf with Ntotal generators

• Gf → Hf with Ntotal − Nbroken generators

• Nphysical = Ngeneral − Nbroken 

• Within SM: U(3)Q×U(3)U×U(3)D →U(1)B

• Ntotal = 3×(3+6i),  Nbroken = Ntotal −1i = 9+17i, 
Ngeneral = 2×(9+9i) (YU, YD)                        
Nphysical = Ngeneral − Nbroken = 9 + 1i
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• In SM: C & P violation maximally

• C & P change chirality

• Left- & right-handed fields in different gauge reps.

independent of SM parameters
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• In SM: CP violation depends on parameters

• CP symmetric if 

• Jarlskog invariant

C and P are violated maximally: left-handed and right-handed fermion fields furnish different gauge

representations, while C and P both change the chirality of fermion fields. This maximal C and P

violation within the SM is also independent of the values of the SM parameters. On the other hand, the

CP violation within the SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian

namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗

ijψ̄
j
Rφ

†ψi
L

CP→ Yijψ̄
j
Rφ

†ψi
L + Y ∗

ijψ̄
i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗
ij . More precisely, the requirement for

CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

2.4 Mass basis
Upon replacing Re(φ0) → (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations

between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] �= 0, a nontrivial mixing matrix V u
QV d†

Q ≡ VCKM �= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour

Lagrangian in the mass basis is thus

LF
m =

�
q̄i /Dqjδij

�
NC

+
g√
2
ūiL /W

+
V ij
CKMdjL + ūiLλ

ij
u u

j
R

�
v + h√

2

�
+ d̄iLλ

ij
d d

j
R

�
v + h√

2

�
+ h.c. ,

(15)

where (uiL, d
i
L) ≡ QT

L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.

5
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• Experimental discovery of CPV in kaon decays
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Mass basis
•                                ⇒   

• mass basis corresponds to diagonal Mq

•  

•  

•
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L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).
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Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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NC = neutral currents (g,γ,Z)
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Mass basis

• Exercise: Show that NC’s are diagonal

• Exercise:Show that in absence of neutrino masses 
there is no mixing in the leptonic sector
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Testing the CKM
• Flavour conversion in SM: 

• fully parametrized by 3 CKM angles

• mediated by charged current weak interactions

• these involve left-handed fields only
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where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)

Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix [7, 8].

A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in

LSM
gauge:

Jµ
W

��
quarks

= ūiLγ
µdiL

u,d mass−basis−→ ūiLVijγ
µdjL . (1.8)

However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:

V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)

where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)
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A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


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=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:

V =


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1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1
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where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.

5

(mass-ordered)



CKM Parametrization

34

where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)

Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix [7, 8].

A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


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=




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−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:
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where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of
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powers of the small parameter λ
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Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)
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A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real
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Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).
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|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of
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a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)
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A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and
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defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
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V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)
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The Wolfenstein parametrization is certainly more transparent than the standard parametrization.

However, if one requires sufficient level of accuracy, the terms of O(λ4) and O(λ5) have to be in-

cluded in phenomenological applications. This can be achieved in many different ways, according to the

convention adopted. The simplest (and nowadays commonly adopted) choice is obtained defining the

parameters {λ, A, �, η} in terms of the angles of the exact parametrization in Eq. (1.9) as follows:

λ
.
= s12 , Aλ2 .

= s23 , Aλ3(�− iη)
.
= s13e

−iδ . (1.11)

The change of variables {sij , δ} → {λ, A, �, η} in Eq. (1.9) leads to an exact parametrization of the

CKM matrix in terms of the Wolfenstein parameters. Expanding this expression up to O(λ5) leads to




1− 1

2λ
2 − 1

8λ
4 λ+O(λ7) Aλ3(�− iη)

−λ+ 1
2A

2λ5[1− 2(�+ iη)] 1− 1
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2 − 1
8λ

4(1 + 4A2) Aλ2 +O(λ8)
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2
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The advantage of this generalization of the Wolfenstein parametrization is the absence of relevant cor-

rections to Vus, Vcd, Vub and Vcb, and a simple change in Vtd, which facilitate the implementation of

experimental constraints.

The unitarity of the CKM matrix implies the following relations between its elements:

I)
�

k=1...3

V ∗
ikVki = 1 , II)

�

k=1...3

V ∗
ikVkj �=i . (1.14)

These relations are a distinctive feature of the SM, where the CKM matrix is the only source of quark

flavor mixing. Their experimental verification is therefore a useful tool to set bounds, or possibly reveal,

new sources of flavor symmetry breaking. Among the relations of type II, the one obtained for i = 1
and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.15)

or
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ↔ [�̄+ iη̄] + [(1− �̄)− iη̄] + 1 = 0 ,

is particularly interesting since it involves the sum of three terms all of the same order in λ and is usually

represented as a unitarity triangle in the complex plane, as shown in Fig. 1.1. It is worth to stress that

Eq. (1.15) is invariant under any phase transformation of the quark fields. Under such transformations

the triangle in Fig. 1.1 is rotated in the complex plane, but its angles and the sides remain unchanged.

Both angles and sides of the unitary triangle are indeed observable quantities which can be measured in

suitable experiments.

3 Present status of CKM fits
The values of |Vus| and |Vcb|, or λ and A in the parametrization (1.12), are determined with good accuracy

from K → π�ν and B → Xc�ν decays, respectively. According to the recent analysis of the UTfit

collaboration [13] their numerical values are

λ = 0.2259± 0.0006 , A = 0.824± 0.013 . (1.16)

Using these results, all the other constraints on the elements of the CKM matrix can be expressed as

constraints on �̄ and η̄ (or constraints on the CKM unitarity triangle in Fig. 1.1). The list of the most

sensitive observables used to determine �̄ and η̄ in the SM includes:
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where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)
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��
quarks

= ūiLγ
µdiL

u,d mass−basis−→ ūiLVijγ
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
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
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 , (1.9)
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.
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V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)

where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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.
= s13e

−iδ . (1.11)
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• most interesting for i=1, j=3

• all three terms on LHS of same order in λ

�

k

V ∗
ikVjk = δij ,

�

k

V ∗
kiVkj = δij .

3.1 Parametrisation of the CKM matrix
We start by fixing the permutation of quark generations via mass ordering. The resulting CKM matrix
has the form

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (16)

Experimentally, VCKM exhbits a strong hierarchical pattern in off-diagonal elements [6]

|Vud| � |Vcs| � |Vtb| � 1 , |Vus| � |Vcd| � 0.22 ,

|Vcb| � |Vts| � 4× 10−2 , |Vub| � |Vtd| � 5× 10−3 . (17)

Such structure can be made explicit in the Wolfenstein expansion [7] in λ ≡ |Vus| � 0.22

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4) . (18)

The four parameters in this parametrisation λ, A, ρ and η can be mapped exactly to the four physical
CKM parameters at any order in the λ expansion. All are of the order O(0.1− 1) and the CP violating
phase is encoded in the imaginary contribution proportional to η. Current experimental precision already
requires that in phenomenological applications, expansion at least to order O(λ4) should be taken into
account.

3.2 Unitarity of the CKM
Being a unitary matrix, one can derive unitarity conditions on the rows and columns of the CKM matrix,
in particular

�

k

V ∗
ikVjk = δij ,

�

k

V ∗
kiVkj = δij . (19)

Phenomenologically, the most interesting condition applies for i = 1 and j = 3

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (20)

simply because all the three terms on the left hand side are of the same order in λ. The equation defines
a triangle in the complex plane. Normalizing one of the sides to unity

VudV ∗
ub

VcdV ∗
cb

+
VtdV ∗

tb

VcdV ∗
cb

+ 1 = 0 , (21)

one can re-express it in terms of the Wolfenstein parameters (up to O(λ5))

[ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0 , (22)

where ρ̄ = ρ(1 − λ2/2) + O(λ4) and η̄ = η(1 − λ2/2) + O(λ4) . The angles (denoted by α, β and
γ in Fig. 1) and sides of this triangle are invariant under phase transformations of quark fields and are
observable quantities.
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Unitarity of CKM
|Vus|(λ) from K → π�ν

|Vcb| (A) from B → Xc�ν

|Vub|2 ∝ ρ̄2 + η̄2 from B → Xu�ν

SψKS = sin 2β =
2η̄(1− ρ̄)

(1− ρ̄)2 + η̄2

eiγ =
ρ̄+ iη̄

ρ̄2 + η̄2

α = π − β − γ

∆md

∆ms
∝

����
Vtd

Vts

����
2

= λ2[(1− ρ̄)2 + η̄2]

�K

λ = 0.2253(9)

A = 0.822(12)
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Unitarity of CKM
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(B→D K rates)

42



Unitarity of CKM
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Unitarity of CKM
• Very likely, CPV in flavour changing processes is 

dominated by CKM phase & Kobayashi-Maskawa 
mechanism of CPV is at work

• Reparametrisation invariant measure of CPV

•  

• Jarlskog determinant in SM

3.3 Self consistency of the CKM assumption
The CKM description of quark flavour conversion has been tested experimentally to great precision. In
particular

– |Vus| (λ) can be extracted from the semileptonic kaon decay K → π�ν with a precision of three
per-mille: λ = 0.2253(9) [6] .

– |Vcb| (A) can be determined from semileptonic B meson decay width measurements B → Xc�ν
to a precision of two percent: A = 0.822(12) [6, 8] .

– Then, |Vub| ∝
�
ρ̄2 + η̄2 can be extracted using charmless semileptonic decays of B mesons

B → Xu�ν .
– The time-dependent CP asymmetry in the decay B → ψKS (SψKS � sin 2β = 2η̄(1− ρ̄)/[(1−
ρ̄)2 + η̄2]) has been measured to great precision at the B factory experiments Belle and BaBar.

– The rates B → DK decays depend on the phase exp(iγ) = (ρ+ iη)/(ρ2 + η2) .
– Similarly, the rates of B → ππ, ρπ, ρρ depend on the angle α = π − β − γ .
– The ratio of neutral B and Bs meson mass diferences ∆md/∆ms ∝ |Vtd/Vts|

2 = λ2
�
(1− ρ̄)2 + η̄2

�

exhibits another non-trivial constraint in the (ρ̄, η̄) plane.
– Finally, CP violation in K → ππ decays (�K) depends in a complicate way on (ρ̄, η̄).

Combined, these measurements lead to an impressive agreement with the best fit ranges for ρ and η (see
also Fig. 1 and Ref. [9]) [8]

ρ = 0.130± 0.024 , η = 0.362± 0.014 . (23)

Note that |η| � |ρ| implies that the CKM phase defined in this way is O(1) . We can also conclude
that, very likely, CP violation in flavour changing processes is dominated by the CKM phase and that the
Kobayashi-Maskawa mechanism of CP violation is at work. Again one can define a reparametrisation
invariant measure of CP violation

Im[VijV
∗
kjVklV

∗
il ] = JKM

�
�ikm�jln , (24)

where JKM = λ6A2η = O(10−5) . Written in this form it is clear the CP violation in the SM is
suppressed by small mixing among the quark generations. The Jarlskog determinant in the SM can then
be written compactly as

J = JKM

�

i>j

m2
i −m2

j

v2
= O(10−22) . (25)

We see that compared to JKM , J is further suppressed by the large quark mass hierarchies.

4 Closer look at CP violation in neutral meson mixing and decays
For simplicity, we will focus on the neutral B meson sistem with the flavour eigenstates B0 ∼ b̄d and
B̄0 ∼ bd̄. Since in general, these are not CP eigenstates, we have

CP |B0� = eiξB |B̄0� ,
CP |B̄0� = e−iξB |B0� . (26)

Stating from an initial superposition state at t = 0 |ψ(0)� = a(0)|B0�+ b(0)|B̄0�, the time evolution of
such a system can in general be described as

|ψ(t)� = a(t)|B0�+ b(t)|B̄0�+ c1(t)|f1�+ c2(t)|f2�+ . . . , (27)
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CPV in neutral meson 
mixing and decays

• Focus on the neutral B meson system: flavour states

• Time evolution
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• Time evolution:

• Decay to final state after time t:

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• Decay to final state after time t:

• N0 - flux norm., 

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• Terms proportional to                 describe a decay 
without net oscillation.

• Terms proportional to                describe a decays 
following net oscillations. 

• Terms proportional to sin(∆mt), sinh(∆Γt/2) 
describe interference between the above two cases. 

• CP violation in interference is possible only if       
Im(λf) ≠ 0 .

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• CP violation in neutral B meson decays to CP 
eigenstates

• In the B (& Bs) system experimentally ∆Γ<<∆m  
⇒ |q/p| ≈ 1: 

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)

9

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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Phases in decay 
amplitudes

• B → f  : amplitude Af 

• B → f  : amplitude Af.

• complex parameters in L appear complex conjugated 
after CP ⇒ opposite signs

• CP odd weak phases

• on-shell intermediate states (even for real L) ⇒ same 
signs (CP even) - strong phases

_ _ __

CP conjugation ⇔⇔
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Phases in decay 
amplitudes

• a1,2,... contributions to amplitude with different 
phases

• δ1,2... strong phases 

• φ1,2... weak phases 

4.1 Phases in decay amplitudes
Consider the decay B → f described by the amplitude Af and its CP conjugate process B̄ → f̄
associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two

amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and

Āf̄ . The associated CP odd phases are conventionally called weak phases. In the SM they are induced

via W exchanges. Note that single amplitude phases are convention dependent and thus not physical.

Only differences between phases of different amplitudes are physical.

On the other hand, on-shell intermediate states in scattering or decay ampitudes can produce phase

changes even if the relevant Lagrangian is real. These are thus independent of CP. They will appear with

same signs in both Af and Āf̄ . These CP even phases are often reffered to as strong phases. In the SM

they are due to strong interaction induced re-scattering. Again, only relative phases between amplitudes

are physical.

In general, one can thus write both decay amplitudes as

Af = |a1|e
i(δ1+φ1) + |a2|e

i(δ2+φ2) + . . . ,

Āf̄ = |a1|e
i(δ1−φ1) + |a2|e

i(δ2−φ2) + . . . , (39)

where a1,2,... are contributions to the amplitude with different phases, δ1,2... are the strong phases and

φ1,2... are the weak phases.

4.2 CP violation in B → ψKS

To a good approximation, the B → ψKS decays are described by a just single weak decay amplitude to

a CP eigenstate (with CP eigenvalue ηf )

Af = |af |e
i(δf+φf ) ,

Āf = |af |e
i(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally

since ∆Γ � ∆m). Then one can write

�
q

p

�2

=
M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

� e2iξB , (41)

and thus λf � ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry

Af (t), in particular

SfCP � ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) � −Arg[(V ∗
tbVtd)

2] = −Arg

�
V ∗
tbVtd

VtbV ∗
td

�
, (43)

while

−e−2iφf =
Ā(B)

ψKS

A(B)
ψKS

= −VcbV ∗
cs aT + . . .

V ∗
cbVcs aT + . . .

eiξK � −VcbV ∗
cs

V ∗
cbVcs

V ∗
cdVcs

VcdV ∗
cs

. (44)

In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM

elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
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CPV in B → ψKS

•  In Bd system |Γ12|<<|M12|, due to O(GF2) long 
distance effects, suppressed by small CKM elements
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CPV in B → ψKS
• In SM: 
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CPV in B → ψKS
• In SM: 
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i(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally

since ∆Γ � ∆m). Then one can write
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q

p

�2

=
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2Γ

∗
12

M12 − i
2Γ12

� e2iξB , (41)

and thus λf � ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry
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SfCP � ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) � −Arg[(V ∗
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�
V ∗
tbVtd

VtbV ∗
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�
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ψKS
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cdVcs

VcdV ∗
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. (44)

In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM

elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
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Āf = |af |e
i(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally

since ∆Γ � ∆m). Then one can write
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=
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Af (t), in particular
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while
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In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM

elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
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K − K oscillations 
forming KS 

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ(B)
ψKS

�
V ∗
tbVtd

VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M s

12

|Md
12|

∝
����
Vts

Vtd

����
2

∼ 30 . (46)

Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
�
S(Bs)
ψφ

�

SM
= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry

dΓ
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B̄0(0) → f(t)

�
− dΓ

dt

�
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���pq
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+
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2 � Im
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+O

�����
Γ12

M12

����
2
�

, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

CPV in interference

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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The observable S(B)
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� sin 2β (note that C(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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S(Bs)
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SM
= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry

dΓ
dt
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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ψφ = − exp[i(ξBs − 2φψφ)]

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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ψKS
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td
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cd

V ∗
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= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
�
S(Bs)
ψφ

�

SM
= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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λ(Bs)
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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The observable S(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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• CP violation in mixing, (indirect CP violation)
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• In SM: 

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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td

VcbV ∗
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V ∗
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= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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V ∗
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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The observable S(B)
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� sin 2β (note that C(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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CPV in B0 and B0
s mixing

Semileptonic asymmetry Aq
SL =

Γ(B̄q→Bq→f )−Γ(Bq→B̄q→f̄ )
Γ(B̄q→Bq→f )+Γ(Bq→B̄q→f̄ ) very small in the SM

DØ measures the di-muon asymmetry, Ab
SL, mixture of semileptonic asymmetries

in B0
s (As

SL) and B0 (Ad
SL). ∼ 3σ from SM [D0, PRD 89 (2014) 012002]

Same approach delicate at pp collider due to production asymmetries.
LHCb measures individually:
As

SL = (−0.06 ± 0.50 ± 0.36)%, 1 fb−1, [LHCb, PLB 728 (2014) 607]
Ad

SL = (−0.02 ± 0.19 ± 0.30)%, 3 fb−1, [arXiv:1409.8586]

Compatible with both SM and DØ
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CP violation in charged 
B decays

• Interesting example:

• Particularly transparent in D decays to CP 
eigenstates

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry
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Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
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with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .
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The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
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11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ(B)
ψKS

�
V ∗
tbVtd

VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M s

12

|Md
12|

∝
����
Vts

Vtd

����
2

∼ 30 . (46)
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B− → D̄0K− : b → c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c → dd̄u , ss̄u ,

D̄0 → fCP : c̄ → dd̄ū , ss̄ū . (51)

In the SM the ratio of the two decay amplitudes is then
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i(δB−γ) , (52)

where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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1− rBe

i(δB+γ)
�
. (53)

can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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