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Photon attenuation 

– Photo electric effect (cross 
section like Z4/E3) 

– Pair creation 

– Compton scattering 
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Imaging 

• Count number of 
photons 
– Conventional Xray 

– TFT film 

– Phosphorous screen with CCD 

– (particle physics) pixel chip 
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Charged particles 

• Energy loss to atomic electron dominates  
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Interactions creating (visible) light 

• Scintillation 
– Crystals or plastics with small 

admixtures of large molecules allow 
low energy excitations 

– secondary emission leads to 
emission(visible) light 

• Cerenkov radiation 
– particle speed exceeds the velocity 

of light in medium 

• Chemical reactions 
– photographic emulsion reducing 

silver grains 

• Transition radiation 
– Medium emits x-rays when 

permittivity changes 
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Interaction creates charge 

• Production of free ions 
and electrons  
– Gas with low density little 

disturbance of a particle track but 
need gas amplification 

– Liquid can be flushed and may 
increase radiation hardness  

• Creation of eh pairs 
– solid state highly efficient and 

precise but can be expensive to 
process 

– Material may cause defections of 
particles path 
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Momentum Measurement 

 

 

• Particle in a magnetic field follows a ‘helix 
shape’ track 

 

 

 

• Toroidal or solonoidal fields 
– CMS large field in a ‘smal’ volume 

– ATLAS two perpendicular fields (inner detector and muon 
spectrometer) 
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500 MeV 

EXAMPLE:     ZEUS  

Drift Chamber 

Inner radius     16 cm 

Outer radius    85 cm 

B-field = 1.5 Tesla 

100 MeV 

50 MeV 
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EXAMPLE:     ATLAS  

Drift tubes 

Inner radius     5 m 

Middle radius  10 m 

Outer radius    15 m 

B-field = 0.6 Tesla 

500 GeV 

Sagitta = 5 mm 
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Velocity Measurements 
• Time of Flight 

• Specific Energy loss (Bethe Bloch)  

 

 

• Cerenkov effect 

 
 

• Transition radiation 
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Faster than the wave velocity 

• wave speed = 1 m/s 

• See the interference pattern 
– the lines are the result of non linear addition of wavefronts 

(shockwave) 

CHIPP January 2015 Els Koffeman - Nikhef & University of Amsterdam 14 



Breaking the sound barrier 

• Vsound = 343 m/s 

• object emits sound 
waves and you hear 
sound 

• sonic boom is the result 
of the object overtaking 
its own wave fronts 
(non lineair shockwave) 
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Cerenkov light 

• particle travels  
– xparticle = ct 

• wave travels  
– Xwave=ct/n 
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Cerenkov light 
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Particle Identification 

• If the momentum is measured the energy loss 
gives information on the mass of the particle 

 

• From the curvature also the charge of the 
particle is known.  

 

• Mass and charge give particle identification 
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Energy measurement 
• Electrons (or positrons) and photons 

– Electromagnetic shower 

– Electrons (positrons)  and photons lose energy due to Bremsstrahlung 
and pair creation 

• Hadrons 
– Hadronic shower 

– Charged and neutral hadrons undergo nuclear and subsequent 
electromagnetic interactions  

• Muons  
– No or almost no showering, mainly minimum ionising (but: high energy 

muons may generate Bremsstrahlung, resulting in an electromagnetic 
shower) 

• Jets 
– In particle physics calorimeters often measure the energy of a jet, a mix 

(hadrons, photons and electrons) of many particles coming from one 
point in a small cone. 
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Calorimeters 

• Shower development 
– Energy loss mechanisms 

– Electromagnetic showers 

– Hadronic showers 

• Detector types 
– Homogenous absorbers like crystals 

– Sampling detectors  

• EM sampling calorimeters 

• Hadron sampling calorimetrs 

• Compensating Calorimeters 

• Examples 
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Simple EM-shower model 

• Bremsstrahlung and pair production 
– Each step the nr of particles in the shower doubles 

– The energy per particle reduces with factor of two 

– The emission angles are small and a narrow shower develops 

• When the energy falls below the critical energy 
– Ionisation becomes equally important in the energy loss 

– Showers stops over a relatively short distance 
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T.S.Virdee, Proc. of the 1998 European School of High-Energy Physics, CERN 99-04 

Shower maximum occurs 

when shower particles on 

average have an energy 

equal to the critical 

energy 

  

Electromagnetic Shower 
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Event display of a H -> 4e candidate event with m(4l) = 

124.5 (124.6) GeV without (with) Z mass constraint. The 

masses of the lepton pairs are 70.6 GeV and 44.7 GeV. 

The event was recorded by ATLAS on 18-May-2012, 

20:28:11 CEST in run number 203602 as event number 

82614360. The tracks of the two electron pairs are 

colored red, the clusters in the LAr calorimeter are 

colored darkgreen.  



Electromagnetic showers 

• Radiation length (lose all but 1/e of the energy) 
– Lead  Χ0 = 0.5 cm 

– Silicon  Χ0 = 10 cm 

 

• The critical energy is defined as 
– The energy at with the energy loss due bremsstrahlung equals 

the energy loss due to ionisation.  

– Assume the critical energy is 100 MeV, then a layer of 10 times 
the radiation length would stop a 100 GeV photon. 

 

– Ecritical (MeV) = 800/(Z+1.2)  
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Electromagnetic showers 

• Shower development 
– A particle with energy E0 traverses a layer with thickness t, 

generating a cascade with N particles, each with energy E. 

 

 

– The shower maximum is defined as the position where the 
number of particles in the cascade is at its maximum, this is at 
the point where E reaches the critical energy 
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Energy loss 
– The measured signal is related to the number of charged 

particles, more specifically the overall track length of all charged 
particles in the shower 

 

 

 

 

– The intrinsic uncertainty in the energy determination scales with 
the fluctuatiuon in the number of particles 
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Electromagnetic showers 
• Transverse shower 

development 

– Before the shower 
maximum the transverse 
size fits in a cylinder with 
a radius close to  one 
radiation length 

– After that point most of 
the energy is contained in 
a cylinder with a radius 
equal to two times the 
Moliere Radius 

 

 

 

– Lead  ρ =1.6 cm 

– Silicon  ρ =   6 cm 
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Hadron showers 

• Hadron interaction 
– A hadron loses energy by nuclear reactions, the probability or 

cross section for this process is low but the energy loss is high. 
The main energy loss is caused by 

• Protons losing energy by ionisation 

• π0 decaying into two photons starting EM showers 

• Breaking up nuclei (binding energy is transferred) 

• Neutrino production  

 

– The processes are complex and a simple calculation is not 
possible. Monte Carlo based simulations yield empirical relation 
for the longitudinal and transverse shower development 
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Hadronic showers 
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Hadron showers 

• Hadron interaction 
 

– The longitudinal shower development is expressed in terms of 
the interaction length: 

 

 

 

– absorbtionis proportional to 0A 2/3 ,  where the cross section, 0, 
depends on the incoming particle. 
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Lead- 

scintillating fibre 

calorimeter 

e.m. core 

T.S.Virdee, Proc. of the 1998 European School of High-Energy Physics, CERN 99-04 

Hadron shower 
• Transverse shower 

development 

– The secundaries have 
significant transverse 
momenta and produce a 
wide shower (compared 
with EM showers) 

 

 

– Part of the shower gets 
an electromagnetic 
nature (i.e. The decay of 
the π0 produced in the 
interaction) and does 
remain inside a narrow 
cylinder (two times the 
Moliere radius) 

(cm) Eln14.3-17.3Width 
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A high mass dijet event: two high-pT jets with invariant mass 2.8 TeV. A track pT cut of 2.5 GeV has been 

applied for the display.1st jet (ordered by pT): pT = 310 GeV, y = -2.0, φ = -0.2 

2nd jet: pT = 280 GeV, y = 2.5, φ = 2.9 

3rd jet: pT = 14 GeV, y = -0.9, φ = -1.0 

Jet momenta are calibrated according to the "EM+JES" scheme. Event collected on 5 August 2010.  
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Summary 

• Energy loss mechanisms 
– Carefully distinguish electrons and photons 

– Charged particles (mass > mass_electron) 

 

• Determination 
– Momentum 

– Velocity 

– Energy  
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Calorimeters 

•  Absorber and detector in one 
– Scintillating crystal (NaI(Tl) of BGO)  

– Good energy resolution 

– Interaction depth limited (cost) 

•  Absorber and detector separated: sampling 
– Absorber:Tungsten, uranium, iron...  

– Detector :   

• Proportional counter 

• scintillator (fiber, gas or liquid)  

• semiconductor  

– Longitudinal segmentation straightforward 

– Interaction depth is (almost) umlimited 
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Multiple Scattering 

• Small angle scattering off the nucleus 
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na = number of atoms per unit of volume 

l = length traversed 

A ≈ 2Z the logarithm becomes: 2 ln(173Z2
-1/3), which is similar to the 

logarithm found for the radiation length: 
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Due to multiple scattering after traversing a thickness of material 

a lateral displacement will occur: 

Angle 
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Multiple scattering 

• Using: 2 ln(173Z2
-1/3) ≈ 1/(2naZ2

2re
2LR)  

• average of the square of the projected scattering 
angle can be expressed in the radiation length: 
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