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Flavour & New Physics
• How much can NP still contribute to flavour 

observables?

• Example:

• |Vud| extracted from 0+→0+eν super-allowed 
nuclear β decays

• |Vus| from semileptonic kaon decays K+→π+lν

• |Vub| measured using charmless semileptonic B 
decays B→Xulν

B− → D̄0K− : b → c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c → dd̄u , ss̄u ,

D̄0 → fCP : c̄ → dd̄ū , ss̄ū . (51)

In the SM the ratio of the two decay amplitudes is then
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aDf
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D
f −δD̄f ) � ηfrBe

i(δB−γ) , (52)

where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular

A(B− → f+K
−) = A0

�
1 + rBe

i(δB−γ)
�
,

A(B− → f−K
−) = A0

�
1− rBe

i(δB−γ)
�
,

A(B+ → f+K
−) = A0

�
1 + rBe

i(δB+γ)
�
,

A(B+ → f−K
−) = A0

�
1− rBe

i(δB+γ)
�
. (53)

can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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Flavour & New Physics
• Consider NP contributions to observables which are 

(loop, CKM) suppressed in SM

• Can use CKM determination from tree-level 
observables:

• |Vud|, |Vus|, |Vcb| and |Vub| as well as γ from B → 
DK decays

• ⇒ allows to predict SM contributions also to loop 
suppressed observables!
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NP in B mixing

4

NP in B mixing

1

M12 = MSM
12 ∆d , ∆d =

�
rde

iθd
�2

∆md = r2d(∆md)
SM

S(B)
ψKS

= sin(2β + 2θd)

a(d)SL = �
�

Γ12

M12

�SM sin θd
r2d

+ �
�

Γ12

M12

�SM cos 2θd
r2d

NP in B mixing

1

M12 = MSM
12 ∆d , ∆d =

�
rde

iθd
�2

∆md = r2d(∆md)
SM

S(B)
ψKS

= sin(2β + 2θd)

a(d)SL = �
�

Γ12

M12

�SM sin θd
r2d

+ �
�

Γ12

M12

�SM cos 2θd
r2d

Tuesday, January 20, 2015



NP in B mixing

5

∆ms = r2s(∆ms)
SM

S(Bs)
ψφ = sin(2βs + 2θs)

a(s)SL = �
�

Γ12

M12

�SM sin θs
r2s

+ �
�

Γ12

M12

�SM cos 2θs
r2s

NP in B mixing

1

M12 = MSM
12 ∆d , ∆d =

�
rde

iθd
�2

∆md = r2d(∆md)
SM

S(B)
ψKS

= sin(2β + 2θd)

a(d)SL = �
�

Γ12

M12

�SM sin θd
r2d

+ �
�

Γ12

M12

�SM cos 2θd
r2d

Tuesday, January 20, 2015



The NP flavour puzzle
• SM is not a complete theory of Nature

• (quantum) description of gravity < 1019 GeV

• neutrino masses < 1015 GeV

• EW fine-tuning suggests NP @ 4πv ∼ 1 TeV
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The NP flavour puzzle
• SM is not a complete theory of Nature

7
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The NP flavour puzzle
• SM as effective field theory

• valid below cut-off scale Λ

• for natural theory: 

• NP flavour puzzle:                                            
If there is NP at the TeV scale, why haven’t we seen 
its effects in flavour observables?

2. It does not include neutrino masses. This further limits its validity down to below the maxi-

mal scale at which new degrees of freedom can accommodate at least two massive neutrinos

msee−saw � 1015 GeV.

3. The fine-tuning of the EW symmetry breaking scale compared to the large scales in the above

points 1. and 2. suggests NP already at scales of the order 4πv ∼ 1 TeV .
3

Given the SM is merely an effective field theory valid below a cut-off energy scale Λ, one needs to

consider additional terms in the theory Lagrangian consisting of SM field operators with canonical

dimensions d > 4:

L = LSM +
�

d>4

�

n

c(d)n

Λd−4
O

(d)
n . (58)

In a natural theory one expects c(d)n ∼ O(1) unless the relevant operators are forbidden or suppressed by

symmetries. For Λ ∼ TeV and without imposing additional symmetries beyond the gauged SM ones, the

above condition is severely violated for several O
(6)
n , which contribute to flavour changing processes.

This constitutes the so-called NP flavour puzzle , which can be articulated through the following ques-

tion: If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively,

one could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L
are (classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already

broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.

In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated

by box diagrams with the top quarks appearing in the loop. These contributions can be schematically

written as

MSM
12 =

G2
Fm

2
t

16π2
(V ∗

tiVtj)
2 �M̄ |(d̄iLγµd

j
L)

2
|M�F

�
m2

t

m2
W

�
+ . . . , (59)

where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function

normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which

are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten

completely in terms of the fundamental flavour parameters (Yukawas) in the unbroken theory

G2
Fm

2
t

16π2
(V ∗

tiVtj)
2 =

(YuY ∗
u )ij

128π2m2
t
, (60)

which can be interpreted as due to Goldstone Higgs exchanges in the gaugeless (g → 0) limit of the

SM.

The relevant hadronic matrix elements between the external M and M̄ mesons can be written as

�M̄ |(d̄iLγµd
j
L)(d̄

i
Lγ

µdjL)|M� = 2

3
f2
Mm2

M B̂M , (61)

where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected

in the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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The NP flavour puzzle
• SM as effective field theory

• Flavour as indirect probe of BSM physics beyond 
direct reach
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(Over)constraining the 
SM flavor sector
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(Over)constraining the 
SM flavor sector & NP
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NP in ΔF=2
• In SM:(                        )
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one could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L
are (classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already

broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
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where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function

normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which

are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten
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where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected

in the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function
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which can be interpreted as due to Goldstone Higgs exchanges in the gaugeless (g → 0) limit of the
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The relevant hadronic matrix elements between the external M and M̄ mesons can be written as

�M̄ |(d̄iLγµd
j
L)(d̄

i
Lγ

µdjL)|M� = 2

3
f2
Mm2

M B̂M , (61)

where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected

in the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
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ΛNP
LI
LiL
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Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
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NP

(cLγµuL)
2 +

zbd
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NP

(dLγµbL)
2 +
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2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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neutral B-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B
0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B
0〉 = −1

3
m2

Bf
2
BBB. (46)

Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>























√
zsd 1× 103 TeV ∆mK

√
zcu 1× 103 TeV ∆mD

√
zbd 4× 102 TeV ∆mB

√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>























√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
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(dLγµsL)
2 +
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2 +

zbd
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2 +

zbs
Λ2
NP
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2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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AB ∼ zij [q̄iΓ

Aqj ]⊗ [q̄iΓ
Bqj ]

zij ∼ exp(iφNP )
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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2
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Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[

1− 11x

4
+

x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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in case of TeV NP, flavour structure needs to be far from generic
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
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2 +
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Λ2
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2 +

zbd
Λ2
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2 +
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2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
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2
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f2
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m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
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S0(x) =
x

(1− x)2

[

1− 11x

4
+

x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.

12

⇒

⇒

in case of TeV NP, flavour structure needs to be far from generic

18

Tuesday, January 20, 2015



NP in ΔF=2

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d
2r

0 1 2 3 4 5 6

d
!2

-3

-2

-1

0

1

2

3
1-CL

d
2r

0 1 2 3 4 5 6

d
!2

-3

-2

-1

0

1

2

3

FPCP 2007

CKM
f i t t e r (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dh
0 0.5 1 1.5 2 2.5 3

d
"

0

0.5

1

1.5

2

2.5

3

1-CL

dh
0 0.5 1 1.5 2 2.5 3

d
"

0

0.5

1

1.5

2

2.5

3

FPCP 2007

CKM
f i t t e r

Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,
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= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
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S0(x) =
x

(1− x)2

[

1− 11x

4
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x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
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zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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B(K+ → π+νν̄) ∼ 8× 10−11 ,

B(Bd → µ+µ−) ∼ 10−10 ,

B(Bs → µ+µ−) ∼ 4× 10−9 .
⇒
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Figure 2: Correlation between the branching ratios of Bs → µ+µ− and Bd → µ+µ−

in MFV, the SM4 and four SUSY flavour models. The gray area is ruled out experi-
mentally. The SM point is marked by a star.

3.2 Bs → µ+µ− vs. Bd → µ+µ−

The correlation between the decays Bs → µ+µ− and Bd → µ+µ− is an example of a
“vertical” correlation mentioned in section 2. Beyond the SM, their branching ratios
can be written as

BR(Bq → µ+µ−) ∝ |S|2
�
1− 4x2

µ

�
+ |P |2, (5)

S = Cbq
S − C �bq

S , P = Cbq
P − C �bq

P + 2xµ(C
bq
10 − C �bq

10 ) , xµ = mµ/mBs . (6)

Order-of-magnitude enhancements of these branching ratios are only possible in the
presence of sizable contributions from scalar or pseudoscalar operators. In two-Higgs-
doublet models, the contribution to Cbq

S from neutral Higgs exchange scales as tan β2,
where tan β is the ratio of the two Higgs VEVs. In the MSSM, the non-holomorphic
corrections to the Yukawa couplings even enhance this contribution to tanβ3.

Figure 2 shows the correlation between BR(Bs → µ+µ−) and BR(Bd → µ+µ−)
in MFV, the SM4 and four SUSY flavour models¶ analyzed in detail in [10]. The
MFV line, shown in orange, is obtained from the flavour independence of the Wil-
son coefficients, cf. eq. (3). The largest effects are obtained in the SUSY flavour
models due to the above-mentioned Higgs-mediated contributions. While in some

¶The acronyms stand for the models by Agashe and Carone (AC, [13]), Ross, Velasco-Sevilla
and Vives (RVV2, [12]), Antusch, King and Malinsky (AKM, [11]) and a model with left-handed
currents only (LL, [14]).
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The decay B0 → K∗0[→ K+π−]µ+µ−
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Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into

8π

3

d4Γ

dq2 d cos θ� d cos θK∗ dφ
= Js

1 sin
2 θK∗ + Jc

1 cos
2 θK∗ + (Js

2 sin
2 θK∗ + Jc

2 cos
2 θK∗) cos 2θ�

+J3 sin
2 θK∗ sin2 θ� cos 2φ+ J4 sin 2θK∗ sin 2θ� cosφ+ J5 sin 2θK∗ sin θ� cosφ

+(Js
6 sin

2 θK∗ + Jc
6 cos

2 θK∗) cos θ� + J7 sin 2θK∗ sin θ� sinφ

+J8 sin 2θK∗ sin 2θ� sinφ+ J9 sin
2 θK∗ sin2 θ� sin 2φ, (1)

that is, into q2-dependent observables5 J j
i (q

2) and the dependence on the angles θ�, θK∗ and

φ. No additional angular dependencies can be induced by any extension of the SM operator

basis [11] as found by [12, 13]. The following simplifications arise in the limit m� → 0: Js
1 = 3Js

2 ,

Jc
1 = −Jc

2 and Jc
6 = 0.

The differential decay rate d4Γ̄ of the CP-conjugated decay B0
d → K0∗(→ K+π−) + �̄� is

obtained through the following replacements

J j
1,2,3,4,7 → J̄ j

1,2,3,4,7[δW → −δW ], J j
5,6,8,9 → − J̄ j

5,6,8,9[δW → −δW ], (2)

due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.

The angular distribution provides twice as many observables (J j
i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].

� Decay fully described by three helicity angles θ�, θK ,Φ and q2 = m(µ+µ−)2

� 1

Γ

d3(Γ+ Γ̄)

d cos θ�d cos θKdΦ
=

9

32π

�
3
4 (1− FL) sin

2 θK + FL cos
2 θK + 1

4 (1− FL) sin
2 θK cos 2θ�

− FL cos
2 θK cos 2θ� + S3 sin

2 θK sin2 θ� cos 2Φ

+ S4 sin 2θK sin 2θ� cosΦ+ S5 sin 2θK sin θ� cosΦ

+ 4
3AFB sin2 θK cos θ� + S7 sin 2θK sin θ� sinΦ

+ S8 sin 2θK sin 2θ� sinΦ+ S9 sin
2 θK sin2 θ� sin 2Φ

�

� FL(q2), AFB(q2), Si(q2) combinations of K∗0 spin amplitudes

depending on Wilson coefficients C(�)
7 , C(�)

9 , C(�)
10

� Large theory uncertainty due to the q2 dependent hadronic form-factors

� Determine observables in 4D (cos θ�, cos θK ,φ and mKπµµ) fit in bins of q2
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Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into
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3
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1 sin
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2 θK∗) cos θ� + J7 sin 2θK∗ sin θ� sinφ

+J8 sin 2θK∗ sin 2θ� sinφ+ J9 sin
2 θK∗ sin2 θ� sin 2φ, (1)

that is, into q2-dependent observables5 J j
i (q

2) and the dependence on the angles θ�, θK∗ and

φ. No additional angular dependencies can be induced by any extension of the SM operator

basis [11] as found by [12, 13]. The following simplifications arise in the limit m� → 0: Js
1 = 3Js

2 ,

Jc
1 = −Jc

2 and Jc
6 = 0.

The differential decay rate d4Γ̄ of the CP-conjugated decay B0
d → K0∗(→ K+π−) + �̄� is

obtained through the following replacements

J j
1,2,3,4,7 → J̄ j

1,2,3,4,7[δW → −δW ], J j
5,6,8,9 → − J̄ j

5,6,8,9[δW → −δW ], (2)

due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.

The angular distribution provides twice as many observables (J j
i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].

� Decay fully described by three helicity angles θ�, θK ,Φ and q2 = m(µ+µ−)2

� 1

Γ

d3(Γ+ Γ̄)

d cos θ�d cos θKdΦ
=

9

32π
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+ S8 sin 2θK sin 2θ� sinΦ+ S9 sin
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�

� FL(q2), AFB(q2), Si(q2) combinations of K∗0 spin amplitudes

depending on Wilson coefficients C(�)
7 , C(�)

9 , C(�)
10

� Large theory uncertainty due to the q2 dependent hadronic form-factors

� Determine observables in 4D (cos θ�, cos θK ,φ and mKπµµ) fit in bins of q2
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• B0 → K∗0[→ K+π−]μ+μ−

• differential rate analysis

• challenging theory uncertainties 
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• B0 → K∗0[→ K+π−]μ+μ−

• differential rate analysis

NP in ΔF=1
L∆F=1 = ysd

v2

Λ2
NP

g

cW
d̄L /ZsL + ycu

v2

Λ2
NP

g

cW
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Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into
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d4Γ

dq2 d cos θ� d cos θK∗ dφ
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2 θK∗ sin2 θ� sin 2φ, (1)

that is, into q2-dependent observables5 J j
i (q

2) and the dependence on the angles θ�, θK∗ and

φ. No additional angular dependencies can be induced by any extension of the SM operator

basis [11] as found by [12, 13]. The following simplifications arise in the limit m� → 0: Js
1 = 3Js

2 ,

Jc
1 = −Jc

2 and Jc
6 = 0.

The differential decay rate d4Γ̄ of the CP-conjugated decay B0
d → K0∗(→ K+π−) + �̄� is

obtained through the following replacements

J j
1,2,3,4,7 → J̄ j

1,2,3,4,7[δW → −δW ], J j
5,6,8,9 → − J̄ j

5,6,8,9[δW → −δW ], (2)

due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.

The angular distribution provides twice as many observables (J j
i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].

� Decay fully described by three helicity angles θ�, θK ,Φ and q2 = m(µ+µ−)2
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� Large theory uncertainty due to the q2 dependent hadronic form-factors
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Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into
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due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.
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i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
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ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].
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Less form factor dependent observables P �
i (1 fb

−1)

� Less FF dependent observables P �
i introduced in [JHEP 05 (2013) 137]

� For P �
4,5 = S4,5/

�
FL(1− FL) leading FF uncertainties cancel for all q2

� 3.7σ local deviation from SM prediction [JHEP 05 (2013) 137] in P �
5

]4c/2 [GeV2q
0 5 10 15 20

' 4
P

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

SM Predictions

Data

LHCb

]4c/2 [GeV2q
0 5 10 15 20

' 5
P

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

SM Predictions

Data

LHCb

3.7σ

[PRL 111, 191801 (2013)]

C. Langenbruch (Warwick), Beauty 2014 Electroweak penguin decays

Tuesday, January 20, 2015



• B0 → K∗0[→ K+π−]μ+μ−, B+ → K+μ+μ−/e+e-

• differential rate analysis

• lepton flavour universality tests

•                                                  in the SM 
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Test of lepton universality in B+ → K+�+�−

� RK = B(B+→K+µ+µ−)
B(B+→K+e+e−) = 1±O(10−3) in the SM

� Sensitive to new (pseudo)scalar operators
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[arxiv:1406.6482]

B+ → K+µ+µ− B+ → K+e+e−

ψ(2S)K+

J/ψK+
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• B0 → K∗0[→ K+π−]μ+μ−, B+ → K+μ+μ−/e+e-

• differential rate analysis

• lepton flavour universality tests

•                                                  in the SM 

NP in ΔF=1
L∆F=1 = ysd
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Test of lepton universality in B+ → K+�+�−

� RK = B(B+→K+µ+µ−)
B(B+→K+e+e−) = 1±O(10−3) in the SM

� Sensitive to new (pseudo)scalar operators

1

10

210

310

410

]2c) [MeV/!µ+µ+K(m
4800 5000 5200 5400 5600

]4 c/2
 [G

eV
2 q

0

5

10

15

20

25

LHCb (a)

1

10

210

310

]2c) [MeV/!e+e+K(m
4800 5000 5200 5400 5600

]4 c/2
 [G

eV
2 q

0

5

10

15

20

25

LHCb (b)

[arxiv:1406.6482]

B+ → K+µ+µ− B+ → K+e+e−

ψ(2S)K+

J/ψK+

ψ(2S)K+

J/ψK+

radiative tails radiative tails

� Experimental challenges for B+ → K+e+e− mode
1. Trigger 2. Bremsstrahlung

� Use double ratio to cancel systematic uncertainties

RK =
�

NK+µ+µ−

NK+e+e−

��
NJ/ψ (e+e−)K+

NJ/ψ (µ+µ−)K+

��
�K+e+e−
�K+µ+µ−

��
�J/ψ (µ+µ−)K+

�J/ψ (e+e−)K+

�

C. Langenbruch (Warwick), Beauty 2014 Electroweak penguin decays

]4c/2 [GeV2q
0 5 10 15 20

KR

0

0.5

1

1.5

2

SM

LHCbLHCb

LHCb BaBar Belle

[arxiv:1406.6482]

Branching fraction measurements 21 / 22

Test of lepton universality in B+ → K+�+�−

]2c) [MeV/!e+e+K(m
5000 5200 5400 5600

 )2 c
C

an
di

da
te

s /
 ( 

40
 M

eV
/

0

5

10

310"

LHCb

(a)

]2c) [MeV/!e+e+K(m
5000 5200 5400 5600

 )2 c
C

an
di

da
te

s /
 ( 

40
 M

eV
/

0

10

20

30

40 LHCb

(d)

]4c/2 [GeV2q
0 5 10 15 20

KR

0

0.5

1

1.5

2

SM

LHCbLHCb

LHCb BaBar Belle

B+ → J/ψ (→ e+e−)K+
B+ → K+e+e−

triggered on e triggered on e

[a
rx
iv
:1
40
6.
64
82
]

� Use theoretically and experimentally
favoured q2 region ∈ [1, 6]GeV2

� RK = 0.745+0.090
−0.074(stat.)± 0.036(syst.),
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• Example: Supersymmetry

• SUSY models in general provide new sources of 
flavor violation

• supersymmetry breaking soft mass terms for 
squarks and sleptons 

• trilinear couplings of a Higgs field with a squark-
antisquark or slepton-antislepton pairs
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formalism. In that case the flavor group is broken down to U(2)Q × U(2)U × U(1)t × U(3)D , and

the expansion in Eq. (109) no longer holds. In particular, resummation over yb is not required.

Flavor violation is described by linearly expanding in the down type Yukawa couplings, from which

it follows that contributions proportional to the bottom Yukawa are further suppressed beyond

the SM CKM suppression.

It should also be pointed out that NLMFV differs from the next-to-MFV framework [4, 5],

since the latter exhibits additional spurions at low energy.

6.4 MFV in covariant language

The covariant formalism described in Sec. 4 enables us to offer further insight on the MFV frame-

work. In the LMFV case, the NP source XQ from Eq. (39) or Eq. (87) is a linear combination of the

AQd and AQu “vectors”, naturally with O(1) coefficients at most. Hence we can immediately infer

that no new CPV sources exist, as all vectors are on the same plane, and that the induced flavor

violation is small (recall that the angle between AQu and AQd is small – O(λ2
)). These conclusions

are of course already known, but they emerge naturally when using the covariant language.

In the GMFV scenario, XQ is a general function of AQu and AQd . We can alternatively express

it in terms of the covariant basis introduced in Sec. 4.2.2, since this basis is constructed using only

AQu and AQd . Then, it is easy to see that an arbitrary function of the Yukawa matrices could

produce any kind of flavor and CP violation [60, 61, 62]. However, the directions denoted by �̂D
require higher powers of the Yukawas, so their contribution is generically much smaller (in [60]

it was noticed that some directions, which we identify as �̂D, are not generated via RGE flow).

Therefore, the induced flavor and CP violation tend to be restricted to the submanifold which

corresponds to the U(2)Q limit (that is, the directions denoted by ÂQu,Qd , Ĵ , Ĵu,d and Ĉu,d).

7 Supersymmetry

Supersymmetric models provide, in general, new sources of flavor violation, for both the quark

and the lepton sectors. The main new sources are the supersymmetry breaking soft mass terms

for squarks and sleptons and the trilinear couplings of a Higgs field with a squark-antisquark or

slepton-antislepton pairs. Let us focus on the squark sector. The new sources of flavor violation

are most commonly analyzed in the basis in which the corresponding (down or up) quark mass

matrix and the neutral gaugino vertices are diagonal. In this basis, the squark masses are not

necessarily flavor-diagonal, and have the form

q̃
∗
Mi(M

2
q̃ )

MN
ij q̃Nj = (q̃

∗
Li q̃

∗
Rk)

�
(M

2
q̃ )Lij A

q
ilvq

A
q
jkvq (M

2
q̃ )Rkl

��
q̃Lj

q̃Rl

�
, (125)

where M,N = L,R label chirality, and i, j, k, l = 1, 2, 3 are generation indices. (M
2
q̃ )L and (M

2
q̃ )R

are the supersymmetry breaking squark masses-squared. The A
q
parameters enter in the trilinear

scalar couplings A
q
ijHq�qLi�q∗Rj, where Hq (q = u, d) is the q-type Higgs boson and vq = �Hq�.

In this basis, flavor violation takes place through one or more squark mass insertion. Each

mass insertion brings with it a factor of (δqij)MN ≡ (M
2
q̃ )

MN
ij /m̃

2
q, where m̃

2
q is a representative

q-squark mass scale. Physical processes therefore constrain

[(δqij)MN ]eff ∼ max[(δqij)MN , (δ
q
ik)MP (δ

q
kj)PN , . . . , (i ↔ j)]. (126)
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ

[11f̃6(xu) + 4xuf6(xu)]
(∆m2

ũ)
2

m4
ũ

(Ku
21K

u∗
11 )

2, (58)

MK
12 =

α2
smKf2

KBKηQCD
108m2

d̃

[11f̃6(xd) + 4xdf6(xd)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
21K

d
11)

2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ

[11f̃6(xu) + 4xuf6(xu)]
(∆m2

ũ)
2

m4
ũ

(Ku
21K

u∗
11 )

2, (58)

MK
12 =

α2
smKf2

KBKηQCD
108m2

d̃

[11f̃6(xd) + 4xdf6(xd)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
21K

d
11)

2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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For example,

[(δd12)LR]eff ∼ max[Ad
12vd/m̃

2
d, (M

2
d̃
)L1kA

d
k2vd/m̃

4
d, A

d
1kvd(M

2
d̃
)Rk2/m̃

4
d, . . . , (1 ↔ 2)]. (127)

Note that the contributions with two or more insertions may be less suppressed than those with

only one.

In terms of mass basis parameters, the (δqij)MM ’s stand for a combination of mass splittings

and mixing angles:

(δqij)MM =
1

m̃2
q

�

α

(Kq
M)iα(K

q
M)

∗
jα∆m̃2

qα , (128)

where Kq
M is the mixing matrix in the coupling of the gluino (and similarly for the bino and neutral

wino) to qLi− q̃Mα; m̃2
q =

1
3

�3
α=1 m

2
q̃Mα

is the average squark mass-squared, and ∆m̃2
qα = m2

q̃α−m̃2
q.

Things simplify considerably when the two following conditions are satisfied [140, 141], which means

that a two generation effective framework can be used (for simplicity, we omit here the chirality

index):

|KikK
∗
jk| � |KijK

∗
jj|, |KikK

∗
jk∆m̃2

qkqi
| � |KijK

∗
jj∆m̃2

qjqi |, (129)

where there is no summation over i, j, k and where ∆m̃2
qjqi = m2

q̃j −m2
q̃i . Then, the contribution of

the intermediate q̃k can be neglected, and furthermore, to a good approximation, KiiK∗
ji+KijK∗

jj =

0. For these cases, we obtain a simpler expression for the mass insertion term

(δqij)MM =
∆m̃2

qjqi

m̃2
q

(Kq
M)ij(K

q
M)

∗
jj , (130)

In the non-degenerate case, in particular relevant for alignment models, it is useful to take instead

of m̃q the mass scale m̃q
ij =

1
2(mq̃i +mq̃j) [142], which better approximates the full expression. We

also define

�δqij� =
�
(δqij)LL(δ

q
ij)RR . (131)

The new sources of flavor and CP violation contribute to FCNC processes via loop diagrams

involving squarks and gluinos (or electroweak gauginos, or higgsinos). If the scale of the soft

supersymmetry breaking is below TeV, and if the new flavor violation is of order one, and/or

if the phases are of order one, then these contributions could be orders of magnitude above the

experimental bounds. Imposing that the supersymmetric contributions do not exceed the phe-

nomenological constraints leads to constraints of the form (δqij)MM � 1. Such constraints imply

that either quasi-degeneracy (∆m̃2
qjqi � (m̃q

ij)
2
) or alignment (|Kq

ij| � 1) or a combination of the

two mechanisms is at work.

Table 4 presents the constraints obtained in Refs. [17, 18, 143, 144] as appear in [140]. Wher-

ever relevant, a phase suppression of order 0.3 in the mixing amplitude is allowed, namely we quote

the stronger between the bounds on Re(δqij) and 3Im(δqij). The dependence of these bounds on the

average squark mass m̃q, the ratio x ≡ m2
g̃/m̃

2
q as well as the effect of arbitrary strong CP violating

phases can be found in [140].

For large tanβ, some constraints are modified from those in Table 4. For instance, the effects
of neutral Higgs exchange in Bs and Bd mixing give, for tanβ = 30 and x = 1 (see [140, 145, 146]

and refs. therein for details):

�δd13� < 0.01

�
MA0

200GeV

�
, �δd23� < 0.04

�
MA0

200GeV

�
, (132)
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q ij (δqij)MM �δqij�
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (δqij)MM and on �δqij�, where q = u, d and M =

L,R. The constraints are given for m̃q = 1 TeV and x ≡ m2
g̃/m̃

2
q = 1. We assume that the phases

could suppress the imaginary parts by a factor ∼ 0.3. The bound on (δd23)RR is about 3 times

weaker than that on (δd23)LL (given in table). The constraints on (δd12,13)MM , (δu12)MM and (δd23)MM

are based on, respectively, Refs. [143], [17] and [144].

q ij (δqij)LR
d 12 2× 10

−4

d 13 0.08
d 23 0.01
d 11 4.7× 10

−6

u 11 9.3× 10
−6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (δqij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ≡ m2
g̃/m̃

2
q = 1. The constraints on δd12,13, δ

u
12, δ

d
23

and δqii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between the

neutron and quark EDMs as in [148]).

whereMA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as (30/ tan β)2.
The experimental constraints on the (δqij)LR parameters in the quark-squark sector are pre-

sented in Table 5. The bounds are the same for (δqij)LR and (δqij)RL, except for (δd12)MN , where

the bound for MN = LR is 10 times weaker. Very strong constraints apply for the phase of

(δq11)LR from EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on (δu,d,�11 )LR

are weakened by a factor ∼ 6.

While, in general, the low energy flavor measurements constrain only the combinations of

the suppression factors from degeneracy and from alignment, such as Eq. (130), an interesting

exception occurs when combining the measurements of K0
–K0 and D0

–D0 mixing to test the first

two generation squark doublets (based on the analysis in Sec. 5.2.1). Here, for masses below the

TeV scale, some level of degeneracy is unavoidable [23]:

m �Q2
−m �Q1

m �Q2
+m �Q1

≤
�
0.034 maximal phases

0.27 vanishing phases
(133)

Similarly, using ∆F = 1 processes involving the third generation (Sec. 5.2.2), the following bound

is obtained [59] ���m2
Q̃2

−m2
Q̃3

���
�
2mQ̃2

+mQ̃3

�2 < 20

�
m̃Q

100GeV

�2

, (134)
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ

[11f̃6(xu) + 4xuf6(xu)]
(∆m2

ũ)
2

m4
ũ

(Ku
21K

u∗
11 )

2, (58)

MK
12 =

α2
smKf2

KBKηQCD
108m2

d̃

[11f̃6(xd) + 4xdf6(xd)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
21K

d
11)

2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku
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couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]
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matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
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2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives
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Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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NP in Flavour
• Minimal Flavour Hypothesis

• flavour-violating interactions are linked to known 
Yukawa couplings also beyond SM

• (i) flavour symmetry: SU(3)3

• (ii) set of symmetry-breaking terms:

• tractable due to peculiar structure of SM flavour

Chapter 3

Flavor physics beyond the SM: models and predictions

If the physics beyond the SM respects the SM gauge symmetry, as we expect from general arguments,
the corrections to low-energy flavor-violating amplitudes can be written in the following general form

A(fi → fj +X) = A0

�
cSM
M2

W

+
cNP

Λ2

�
, (3.1)

where Λ is the energy scale of the new degrees of freedom. This structure is completely general: the
coefficients cSM(NP) may include appropriate CKM factors and eventually a ∼ 1/(16π2) suppression if
the amplitude is loop-mediated. Given our ignorance about the cNP, the values of the scale Λ probed by
present experiments vary over a wide range. However, the general result in Eq. (3.1) allows us to predict
how these bounds will improve with future experiments: the sensitivity on Λ scale as N1/4, where
N is the number of events used to measure the observable. This implies that is not easy to increase
substantially the energy reach with indirect NP searches only. Moreover, from Eq. (3.1) it is also clear
that indirect searches can probe NP scales well above the TeV for models where (cSM � cNP), namely
models which do not respect the symmetries and the symmetry-breaking pattern of the SM.

The bound on representative ∆F = 2 operators have already been shown in Table 1.1. As can
be seen, for cNP = 1 present data probes very high scales. On the other hand, if we insist with the
theoretical prejudice that NP must show up not far from the TeV scale in order to stabilize the Higgs
sector, then the new degrees of freedom must have a peculiar flavor structure able to justify the smallness
of the effective couplings cNP for Λ = 1 TeV.

1 The Minimal Flavor Violation hypothesis
The main idea of MFV is that flavor-violating interactions are linked to the known structure of Yukawa
couplings also beyond the SM. In a more quantitative way, the MFV construction consists in identifying
the flavor symmetry and symmetry-breaking structure of the SM and enforce it also beyond the SM.

The MFV hypothesis consists of two ingredients [49]: (1) a flavor symmetry and (ii) a set of
symmetry-breaking terms. The symmetry is noting but the large global symmetry Gflavor of the SM
Lagrangian in absence of Yukawa couplings shown in Eq. (1.4). Since this global symmetry, and partic-
ularly the SU(3) subgroups controlling quark flavor-changing transitions, is already broken within the
SM, we cannot promote it to be an exact symmetry of the NP model. Some breaking would appear at the
quantum level because of the SM Yukawa interactions. The most restrictive assumption we can make to
protect in a consistent way quark-flavor mixing beyond the SM is to assume that Yd and Yu are the only
sources of flavor symmetry breaking also in the NP model. To implement and interpret this hypothesis
in a consistent way, we can assume that Gq is a good symmetry and promote Yu,d to be non-dynamical
fields (spurions) with non-trivial transformation properties under Gq:

Yu ∼ (3, 3̄, 1) , Yd ∼ (3, 1, 3̄) . (3.2)

If the breaking of the symmetry occurs at very high energy scales, at low-energies we would only be
sensitive to the background values of the Y , i.e. to the ordinary SM Yukawa couplings. The role of the
Yukawa in breaking the flavor symmetry becomes similar to the role of the Higgs in the the breaking
of the gauge symmetry. However, in the case of the Yukawa we don’t know (and we do not attempt to
construct) a dynamical model which give rise to this symmetry breaking.
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Fig. 3.1: Fit of the CKM unitarity triangle (in 2008) within the SM (left) and in generic extensions of the SM

satisfying the MFV hypothesis (right) [13].

Within the effective-theory approach to physics beyond the SM introduced in Sect. 4, we can say

that an effective theory satisfies the criterion of Minimal Flavor Violation in the quark sector if all higher-

dimensional operators, constructed from SM and Y fields, are invariant under CP and (formally) under

the flavor group Gq [49].

According to this criterion one should in principle consider operators with arbitrary powers of the

(dimensionless) Yukawa fields. However, a strong simplification arises by the observation that all the

eigenvalues of the Yukawa matrices are small, but for the top one, and that the off-diagonal elements of

the CKM matrix are very suppressed. Working in the basis in Eq. (1.6) we have

�
Yu(Yu)

†
�n
i �=j

≈ ynt V
∗
itVtj . (3.3)

As a consequence, in the limit where we neglect light quark masses, the leading ∆F = 2 and ∆F = 1
FCNC amplitudes get exactly the same CKM suppression as in the SM:

A(di → dj)MFV = (V ∗
tiVtj) A

(∆F=1)
SM

�
1 + a1

16π2M2
W

Λ2

�
, (3.4)

A(Mij − M̄ij)MFV = (V ∗
tiVtj)

2
A

(∆F=2)
SM

�
1 + a2

16π2M2
W

Λ2

�
. (3.5)

where the A
(i)
SM are the SM loop amplitudes and the ai are O(1) real parameters. The ai depend on

the specific operator considered but are flavor independent. This implies the same relative correction

in s → d, b → d, and b → s transitions of the same type: a key prediction which can be tested in

experiment.

As pointed out in Ref. [50], within the MFV framework several of the constraints used to determine

the CKM matrix (and in particular the unitarity triangle) are not affected by NP. In this framework, NP

effects are negligible not only in tree-level processes but also in a few clean observables sensitive to

loop effects, such as the time-dependent CPV asymmetry in Bd → ψKL,S . Indeed the structure of

the basic flavor-changing coupling in Eq. (3.5) implies that the weak CPV phase of Bd–B̄d mixing is

arg[(VtdV ∗
tb)

2
], exactly as in the SM. This construction provides a natural (a posteriori) justification of

why no NP effects have been observed in the quark sector: by construction, most of the clean observables

measured at B factories are insensitive to NP effects in the MFV framework. A comparison of the CKM

fits in the SM and in generic MFV models is shown in Fig. 3.1. Essentially only �K and ∆mBd (but not

the ratio ∆mBd/∆mBs) are sensitive to non-standard effects within MFV models.
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why no NP effects have been observed in the quark sector: by construction, most of the clean observables

measured at B factories are insensitive to NP effects in the MFV framework. A comparison of the CKM

fits in the SM and in generic MFV models is shown in Fig. 3.1. Essentially only �K and ∆mBd (but not

the ratio ∆mBd/∆mBs) are sensitive to non-standard effects within MFV models.

27

Tuesday, January 20, 2015



NP in Flavour
• Minimal Flavour Hypothesis

• leading ∆F = 2 and ∆F = 1 FCNC amplitudes

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

γ

β

α

sm∆
d

m∆ d
m∆

K
ε

cb
V

ub
V

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

γ

β

α

sm∆
d

m∆

cb
V

ub
V

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

Fig. 3.1: Fit of the CKM unitarity triangle (in 2008) within the SM (left) and in generic extensions of the SM

satisfying the MFV hypothesis (right) [13].

Within the effective-theory approach to physics beyond the SM introduced in Sect. 4, we can say

that an effective theory satisfies the criterion of Minimal Flavor Violation in the quark sector if all higher-

dimensional operators, constructed from SM and Y fields, are invariant under CP and (formally) under

the flavor group Gq [49].

According to this criterion one should in principle consider operators with arbitrary powers of the

(dimensionless) Yukawa fields. However, a strong simplification arises by the observation that all the

eigenvalues of the Yukawa matrices are small, but for the top one, and that the off-diagonal elements of

the CKM matrix are very suppressed. Working in the basis in Eq. (1.6) we have

�
Yu(Yu)

†
�n
i �=j

≈ ynt V
∗
itVtj . (3.3)

As a consequence, in the limit where we neglect light quark masses, the leading ∆F = 2 and ∆F = 1
FCNC amplitudes get exactly the same CKM suppression as in the SM:

A(di → dj)MFV = (V ∗
tiVtj) A

(∆F=1)
SM

�
1 + a1

16π2M2
W

Λ2

�
, (3.4)

A(Mij − M̄ij)MFV = (V ∗
tiVtj)

2
A

(∆F=2)
SM

�
1 + a2

16π2M2
W

Λ2

�
. (3.5)

where the A
(i)
SM are the SM loop amplitudes and the ai are O(1) real parameters. The ai depend on

the specific operator considered but are flavor independent. This implies the same relative correction

in s → d, b → d, and b → s transitions of the same type: a key prediction which can be tested in

experiment.

As pointed out in Ref. [50], within the MFV framework several of the constraints used to determine

the CKM matrix (and in particular the unitarity triangle) are not affected by NP. In this framework, NP

effects are negligible not only in tree-level processes but also in a few clean observables sensitive to

loop effects, such as the time-dependent CPV asymmetry in Bd → ψKL,S . Indeed the structure of

the basic flavor-changing coupling in Eq. (3.5) implies that the weak CPV phase of Bd–B̄d mixing is

arg[(VtdV ∗
tb)

2
], exactly as in the SM. This construction provides a natural (a posteriori) justification of
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NP in Flavour
• Minimal Flavour Hypothesis

• Example: Supersymmetry

• combination of degeneracy & alignment

Because of this large number of free parameters, we cannot discuss the implications of the MSSM
in flavor physics without specifying in more detail the flavor structure of the model. The versions of
the MSSM analysed in the literature range from the so-called Constrained MSSM (CMSSM), where the
complete model is specified in terms of only four free parameters (in addition to the SM couplings), to
the MSSM without R parity and generic flavor structure, which contains a few hundreds of new free
parameters.

Throughout the large amount of work in the past decades it has became clear that the MSSM with
generic flavor structure and squarks in the TeV range is not compatible with precision tests in flavor
physics. This is true even if we impose R parity, the discrete symmetry which forbids single s-particle
production, usually advocated to prevent a too fast proton decay. In this case we have no tree-level
FCNC amplitudes, but the loop-induced contributions are still too large compared to the SM ones unless
the squarks are highly degenerate or have very small intra-generation mixing angles. This is nothing but
a manifestation in the MSSM context of the general flavor problem illustrated in the first lecture.

The flavor problem of the MSSM is an important clue about the underling mechanism of super-
symmetry breaking. On general grounds, mechanisms of SUSY breaking with flavor universality (such
as gauge mediation) or with heavy squarks (especially in the case of the first two generations) tends to
be favored. However, several options are still open. These range from the very restrictive CMSSM case,
which is a special case of MSSM with MFV, to more general scenarios with new small but non-negligible
sources of flavor symmetry breaking.

2.1 Flavor Universality, MFV, and RGE in the MSSM.
Since the squark fields have well-defined transformation properties under the SM quark-flavor group Gq,
the MFV hypothesis can easily be implemented in the MSSM framework following the general rules
outlined in Sect. 1.

We need to consider all possible interactions compatible with i) softly-broken supersymmetry; ii)
the breaking of Gq via the spurion fields Yu,d. This allows to express the squark mass terms and the
trilinear quark-squark-Higgs couplings as follows [49, 68]:

m̃2
QL

= m̃2
�
a11l + b1YuY

†
u + b2YdY

†
d + b3YdY

†
d YuY

†
u + . . .

�
,

m̃2
UR

= m̃2
�
a21l + b5Y

†
uYu + . . .

�
,

AU = A
�
a31l + b6YdY

†
d + . . .

�
Yd , (3.13)

and similarly for the down-type terms. The dimensional parameters m̃ and A, expected to be in the range
few 100 GeV – 1 TeV, set the overall scale of the soft-breaking terms. In Eq. (3.13) we have explicitly
shown all independent flavor structures which cannot be absorbed into a redefinition of the leading terms
(up to tiny contributions quadratic in the Yukawas of the first two families), when tanβ is not too large
and the bottom Yukawa coupling is small, the terms quadratic in Yd can be dropped.

In a bottom-up approach, the dimensionless coefficients ai and bi should be considered as free
parameters of the model. Note that this structure is renormalization-group invariant: the values of ai and
bi change according to the Renormalization Group (RG) flow, but the general structure of Eq. (3.13) is
unchanged. This is not the case if the bi are set to zero, corresponding to the so-called hypothesis of
flavor universality. In several explicit mechanism of supersymmetry breaking, the condition of flavor
universality holds at some high scale M , such as the scale of Grand Unification in the CMSSM (see
below) or the mass-scale of the messenger particles in gauge mediation (see Ref. [69]). In this case
non-vanishing bi ∼ (1/4π)2 lnM2/M̃2 are generated by the RG evolution. As recently pointed out in
Ref. [70] the RG flow in the MSSM-MFV framework exhibit quasi infra-red fixed points: even if we
start with all the bi = O(1) at some high scale, the only non-negligible terms at the TeV scale are those
associated to the YuY

†
u structures.
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Conclusions
• Absence of significant deviations from SM in quark 

flavour physics is key constraint on any extension of 
SM (example: Supersymmetry)

• Various open questions regarding flavour structure of 
SM itself; can be possibly addressed only using 
flavour measurements

• Set of flavour observables to be measured with 
higher precision in search for NP is limited, but not 
necessarily small (examples: CPV in Bs and D)

• NP effects could still lurk in rare K, D and B decays
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