The XENON1T TPC

Peter Barrow
Physik-Institut
University of Zurich

University of Zurich ${ }^{\text {VIH }}$

Gindelwald, Switzerland, CHIPP School, January 2015

XENON1T

- 3.2 tons (2 within TPC) of liquid xenon used as scintillator.
- Estimated WIMP-Nucleon cross section limit of $2 \times 10^{-47} \mathrm{~cm}^{2}$ at 100 GeV .
- Construction expected to be completed in 2015.

astro-ph.IM: 1206.6288

2-phase TPC Concept

- Purpose is to extract electrons produced by initial interaction (S1) in the liquid to then produce proportional scintillation (S2).
- Time difference between S1 and S2 enables for Z-position.
- fiducial volume of the TPC and background reduction.

XENON1T TPC

XENON1T TPC

Electric Field Simulations

- Position reconstruction dependent on uniformity of E-field.
- Simulations necessary for determination of design of the field cage.
- COMSOL Electric Field Simulation of TPC cross section.
- Uniformity achieved through alteration of shaping rings and resistor chain alone.

7\% variation.
10 mm shaping rings
5 mm separation

$$
\text { z-coordinate }(\mathrm{m})
$$

2\% variation.
8 mm shaping rings 3 mm separation

Building the TPC

- Small $1 / 16$ segment of TPC have been built and tested.
- Structural integrity of field cage confirmed by cryogenic testing
- Full scale TPC design being refined
- Installation of the TPC in 2015.
- A Prototype shaping ring has been produced.

Bell Tests

- Liquid level control highly important for S 2 signal production.
- Need sub-mm accuracy in determination and stability of liquid-gas boundary.
- Liquid level control by over-pressure inside a diving bell
- Small model of full bell can be tests, and results can be extrapolated to XENON1T
- Tests being performed inside specially designed xenon chamber at UZH.

MarmotXL

Bell Tests

- Goal is to accurately disconnect recirculation flow from that into the bell.
- Flow controller with a bypass pipe enables control of flow into the bell without affecting recirculation flow.

- Bell Height $=65 \mathrm{~mm}$
- Bell Diameter (interior) $=200 \mathrm{~mm}$
- Bell Diameter (exterior) $=204 \mathrm{~mm}$
- Small LM Length $=40 \mathrm{~mm}$
- Large LM Length $=120 \mathrm{~mm}$
- LM Width $=7 \mathrm{~mm}$
- Bleed Tube Height above bell= $=11 \mathrm{~mm}$

MarmotXL

Bell Tests

- Stability of level while altering flow into the bell.
- Rapid change of flow into bell results in rapid change, and stabilisation of liquid level
- Altering circulation flow while controller flow into the bell.
- Flow remains stable within 0.1 mm with no correlation to recirculation flow.

Bell Tests

- Effects of LXe above the bell.
- Concluded that no effects could be seen, and that liquefaction from the top place does not occur on a significant level

- Study of contribution to liquid level from heater
- For a given level, approximately 0.5 slpm less is needed with use of heater

Outlook

- Most R\&D finished within 2014.
- Installation of TPC begins in the coming months.
- Integration of TPC to DAQ and slow control by mid-2015.
- Results in 2016.

