Experimental results in radiative B decays

towards a measurement of $b \rightarrow s\gamma$ photon polarization in LHCb

Martino Borsato
On behalf of the LHCb collaboration

Implications of LHCb measurements and future prospects CERN 15-17 October 2014

Introduction

- $b \rightarrow s \gamma$ transitions amongst most sensitive to NP in LHCb
- \bullet FCNC \to NP may enter in the electroweak penguin loop
- Gamma polarization is left handed in SM up to $\mathcal{O}(m_s/m_b)$ \rightarrow NP may change the chirality inside the loop
- LHCb has lot of potential:
 - Up-down asymmetry in $B^{\pm} \to K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$
 - Transverse asymmetries in $B^0 \to K^* \ell^+ \ell^-$ (in particular $e^+ e^-$ at very low q^2)
 - Time dependent analysis of $B_s^0 \to \phi \gamma$
 - more ...

$$\mathbf{B}^{\pm} \to \mathbf{K}^{\pm} \pi^{\mp} \pi^{\pm} \gamma$$

PRL 112, 161801 (2014)

- Published analysis with 3 fb⁻¹
- \sim 14k signal events in [1.1, 1.9] GeV/ c^2 $K\pi\pi$ mass region \rightarrow largest sample to date
- Many $K_{\text{res}}^{(i)}$ will contribute and interfere \rightarrow inclusive measurement in 4 $m(K\pi\pi)$ bins
- Photon polarization is the same for all $K_{\text{res}}^{(i)}$ $\lambda_{\gamma}^{(i)} = \frac{|\mathcal{C}_{7}'|^2 - |\mathcal{C}_{7}|^2}{|\mathcal{C}_{7}'|^2 - |\mathcal{C}_{7}|^2} = \lambda_{\gamma} \quad \text{[PRD 66 054008]}$
- Measure the up down asymmetry $\mathcal{A}_{UD} = C\lambda_{\gamma}$ where C is the integral over the Dalitz plot \rightarrow need input from theory to interpret \mathcal{A}_{UD}

$\mathbf{B}^{\pm} \to \mathbf{K}^{\pm} \pi^{\mp} \pi^{\pm} \gamma$

• Extract angular distributions in 4 bins of $m(K\pi\pi)$ through a χ^2 fit to 4th order polynomials

- \Rightarrow combined significance with respect to no-polarization scenario is 5.2σ
- \Rightarrow first measurement of non-zero photon polarization in $b \rightarrow s \gamma$ transitions

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

- Exploit electron channel to go very low in q^2 \rightarrow analysis in q^2 bin [0.0004, 1] GeV²
- ◆ photon pole contribution dominating
 → very sensitive to photon polarization
 through an angular analysis
- measure $A_T^{(2)}$ and A_T^{Im} (also F_L and A_T^{Re})
- polarization information is in the ϕ angle which is experimentally very hard to bias

9

Angular analysis of $B^0 \rightarrow K^{*0} e^+ e^-$

- Branching ratio paper with 1 fb⁻¹ JHEP1305(2014)159 between 30 and 1000 MeV/ c^2 (\sim 30 events) $\mathcal{B}(B^0 \to e^+e^-K^{*0}) = (3.1 ^{+0.9}_{-0.8} ^{+0.2}_{-0.3} \pm 0.2) \times 10^{-7}$
- Angular analysis with 3 fb⁻¹ in well advanced stage
 - $-m(e^+e^-)$ down to $20 \,\mathrm{MeV}/c^2$
 - Better efficiency through MVA and isolation
 - Angular acceptance and background distributions modelled using MC and data from proxies $B^0 \to K^{*0} \gamma$ and $B^0 \to J/\psi \, (e^+e^-)K^{*0}$
 - Fit $m(K^*e^+e^-)$ and three angles $\cos \theta_l$, $\cos \theta_K$ and $\tilde{\phi}$ \rightarrow extract 4 physical observables F_L , A_T^{Re} , $A_T^{(2)}$, A_T^{Im} (use ϕ folding to simplify the angular expression)
 - Efficiency is not flat in q^2 \Rightarrow provide $< q^2 >$ value as input to theory

3 fb⁻¹ Sensitivity from toy-MC

	$F_{ m L}$	${ m A_T^{Re}}$	$A_{\rm T}^{(2)}$	${ m A_T^{Im}}$
$\sigma^{ m stat}$	0.07	0.17	0.25	0.25
$\sigma^{ m syst}$	0.03	0.05	0.05	0.05

- Sensitivity to photon polarization
- Complementarity to $B^0 \to K^{*0} \mu \mu$
- prospects: error dominated by statistics
 ⇒ good times ahead!

Time dependent $B_s^0 \to \phi \gamma$

- The time dependent analysis with $3 \, \text{fb}^{-1}$ is in well advanced stage
- The large $\Delta\Gamma_s$ allows to be sensitive to photonpolarization through an untagged analysis

$$\Gamma(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} \right)$$

• SM value of $A^{\Delta} = 0.047 \pm 0.025 \pm 0.015_{\alpha_S}$

[Muheim, Xie, Zwicky, PLB664(08)174]

- expect a sensitivity of ~ 0.3 on \mathcal{A}^{Δ} with current statistics
- Statistically limited \rightarrow good!

BR measured with $1 \, \text{fb}^{-1}$

Nucl.Physics B 2013

Conclusions and prospects

- $b \rightarrow s \gamma$ polarization is being explored by LHCb
 - first observation of non-zero polarization in $B \to K\pi\pi\gamma$
 - need strong theoretical input to interpret result in terms of λ_{γ} measurement (investigating also full amplitude analysis)
 - $-B^0 \rightarrow e^+e^-K^{*0}$ angular analysis being utlimated, $\sigma(A_T^{(2)}) \simeq 0.25$
 - time dependent $B_s^0 \to \phi \gamma$ well advanced, $\sigma(\mathcal{A}^{\Delta}) \simeq 0.3$
- significant signal seen on $B \to VV\gamma$, $B^+ \to \phi K^+\gamma$
- Expect to gain a factor 2 on statistical errors with Run2 data
- Much more precision will be available with LHCb upgrade (2020)

BACKUP

Angular analysis of $B^0 \rightarrow K^{*0} e^+ e^-$

Folding: $\tilde{\phi} = \phi + \pi$ if $\phi < 0$ (and $\tilde{\phi} = \phi$ otherwise) \rightarrow removes $J_{4,5,7,8}$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}} = \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + \frac{1}{4$$

$$A_{T}^{(2)} = P_{1}$$

$$A_{T}^{Im} = -2P_{3}^{CP}$$

$$A_{T}^{Re} = 2P_{2}$$

$$\frac{9}{16\pi} \left[\frac{3}{4} (1 - F_{L}) \sin^{2}\theta_{K} + F_{L} \cos^{2}\theta_{K} + \left(\frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} - F_{L} \cos^{2}\theta_{K} \right) \cos(2\theta_{\ell}) + \left(\frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi A_{T}^{(2)} + \left(1 - F_{L} \right) \sin^{2}\theta_{K} \cos \theta_{\ell} A_{T}^{Re} + \left(1 - F_{L} \right) \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi A_{T}^{Im} \right]$$

Angular analysis of $B^0 \rightarrow K^{*0} e^+ e^-$

- A_R/A_L to the 10% level (if it is small and real) $\Rightarrow \sigma(\frac{A_R}{A_L}) \sim \frac{\sigma(A_T^{(2)})}{2} \sim 0.12$
- $\lim_{q^2 \to 0} A_{\mathrm{T}}^{(2)} = \frac{2\mathcal{R}e(C_7^{\mathrm{eff}}C_7'^{\mathrm{eff}*})}{|C_7^{\mathrm{eff}}|^2 + |C_7'^{\mathrm{eff}}|^2}$ $\lim_{q^2 \to 0} A_{\mathrm{T}}^{\mathrm{Im}} = \frac{2\mathcal{I}m(C_7^{\mathrm{eff}}C_7'^{\mathrm{eff}*})}{|C_7^{\mathrm{eff}}|^2 + |C_7'^{\mathrm{eff}}|^2}$
- loss of sensitivity on $A_T^{(2)}$ as a function of q^2 with $\frac{1-4m_\ell^2/q^2}{1+2m_\ell^2/q^2}$
- but above 1 GeV^2 the μ mode has same sensitivity and higher yield in LHCb

Time dependent $B_s^0 \to \phi \gamma$

[Muheim, Xie, Zwicky, PLB664(08)174]

• The large $\Delta\Gamma_s$ allows to be sensitive to photonpolarization through an untagged analysis

$$\Gamma(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} \right)$$

$$\mathcal{A}^{\Delta} = \frac{2\mathcal{R}e\left[\frac{q}{p}\left(\bar{\mathcal{A}}_{L}\mathcal{A}_{L}^{*} + \bar{\mathcal{A}}_{R}\mathcal{A}_{R}^{*}\right)\right]}{|\mathcal{A}_{L}|^{2} + |\bar{\mathcal{A}}_{L}|^{2} + |\mathcal{A}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2}}$$

• SM value of $A^{\Delta} = 0.047 \pm 0.025 \pm 0.015_{\alpha_S}$

3 Angles

- θ_l is defined as the angle btw the dir of the e^+ (e^-) in the dielectron rest frame and the direction of the dielectron in the B^0 (\overline{B}^0) rest frame
- θ_K is defined as the angle btw the dir of the K in the K^{*0} (\overline{K}^{*0}) rest frame and the direction of the K^{*0} (\overline{K}^{*0}) in the B^0 (\overline{B}^0) rest frame
- Φ is defined as the angle btw the plane containing the e⁺ and e⁻ and the plane containing the K and the π.
 The definition does not change under a CP transformation (CP-symmetric observables)