Determination of γ and $-2\beta_s$ from charmless two-body decays of beauty mesons

V. Vagnoni (INFN Bologna)

Implications of LHCb measurements and future prospects

16 October 2014

Introduction

- Long-awaited result in LHCb
 - LHCb reoptimization TDR
 - First seminal " γ from B \rightarrow hh" analysis
 - "γ from loops" working group
 - The aim was in the name
 - Roadmap document (arXiv:0912.4179)
 - Similar analysis in conclusive part of Chap. 3
- Analysis refined through the years
- Paper submitted recently
 - arXiv:1408.4368

Theoretical formalism

• The time-dependent CP asymmetry of a $B_{(s)}$ meson decaying into a self-conjugated final state, $f = \{\pi^+\pi^-, \pi^0\pi^0, K^+K^-\}$, can be written as

$$\mathcal{A}(t) = \frac{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_f \cos\left(\Delta m_{d(s)}t\right) + S_f \sin\left(\Delta m_{d(s)}t\right)}{\cosh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right)}$$

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \qquad S_f = \frac{2 \text{Im} \lambda_f}{1 + |\lambda_f|^2}, \qquad A_f^{\Delta \Gamma} = -\frac{2 \text{Re} \lambda_f}{1 + |\lambda_f|^2},$$

$$(C_f)^2 + (S_f)^2 + (A_f^{\Delta\Gamma})^2 = 1 \qquad \lambda_f = \frac{q}{p} \frac{A_f}{A_f}.$$

Two independent parameters (C_f and S_f) and a sign (of $A_f^{\Delta\Gamma}$)

Theoretical formalism

 The CP-averaged branching ratio of a B_(s) meson decaying into a self-conjugated final state, $f = \{\pi^+\pi^-, \pi^0\pi^0, K^+K^-\}$, is

$$\mathcal{B}_f = \frac{1}{2} F(B_{(s)}^0 \to f) \left(\left| \bar{A}_f \right|^2 + \left| A_f \right|^2 \right)$$

$$F(B^0 o \pi^+ \pi^-) = rac{\sqrt{m_{B^0}^2 - 4m_{\pi^+}^2}}{m_{B^0}^2} au_{B^0},$$

$$F(B^0\to\pi^0\pi^0)=\frac{\sqrt{m_{B^0}^2-4m_{\pi^0}^2}}{m_{B^0}^2}\tau_{B^0}, \qquad \qquad \text{B}_{\text{s}} \to \text{K}^+\text{K}^- \text{ effective lifetime}$$

$$F(B_s^0 \to K^+ K^-) = \frac{\sqrt{m_{B_s^0}^2 - 4m_{K^+}^2}}{m_{B_s^0}^2} \left[2\tau_{B_s^0} - \left(1 - y_s^2\right) \tau(B_s^0 \to K^+ K^-) \right] \qquad y_s = \Delta \Gamma_s / (2\Gamma_s) T_s = \frac{\sqrt{m_{B_s^0}^2 - 4m_{K^+}^2}}{m_{B_s^0}^2} \left[2\tau_{B_s^0} - \left(1 - y_s^2\right) \tau(B_s^0 \to K^+ K^-) \right]$$

Last equation applies a correction for the nonzero width difference of B_s mass eigenstates [PRD 86 (2012) 014027]

Theoretical formalism

• In the case of B[±] decaying to $f = \pi^{\pm}\pi^{0}$, the direct CP asymmetry is

$$\mathcal{A}_f = \frac{\left|\bar{A}_{\bar{f}}\right|^2 - \left|A_f\right|^2}{\left|\bar{A}_{\bar{f}}\right|^2 + \left|A_f\right|^2}, \qquad \frac{\mathsf{A}_\mathsf{f} = \mathsf{amplitude of B}^+ \to \pi^+ \pi^0}{\mathsf{A}_{\bar{\mathsf{f}}} = \mathsf{amplitude of B}^- \to \pi^- \pi^0}$$

• The CP-averaged branching ratio of $B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ is

$$\mathcal{B}_f = \frac{1}{2} F(B^+ \to f) \left(\left| \bar{A}_{\bar{f}} \right|^2 + |A_f|^2 \right)$$

$$F(B^+ \to \pi^+ \pi^0) = \frac{\sqrt{m_{B^+}^2 - (m_{\pi^+} + m_{\pi^0})^2}}{m_{B^+}^2} \tau_{B^+}$$

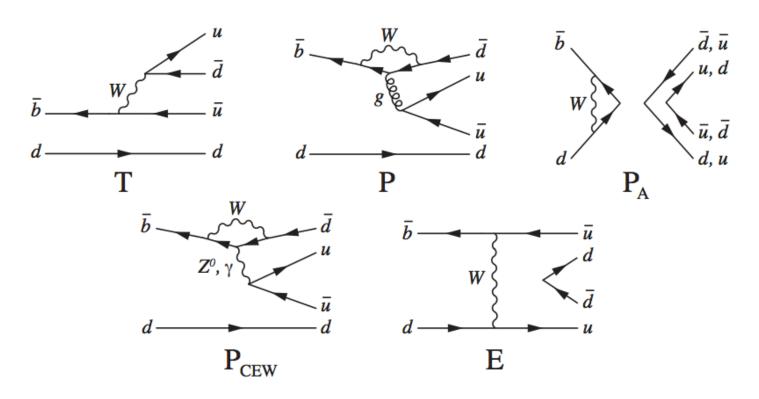
Experimental status

Quantity	BaBar	Belle	CDF	LHCb
$C_{\pi^+\pi^-}$	$-0.25 \pm 0.08 \pm 0.02$	$-0.33 \pm 0.06 \pm 0.03$	_	$-0.38 \pm 0.15 \pm 0.02$
$S_{\pi^+\pi^-}$	$-0.68 \pm 0.10 \pm 0.03$	$-0.64 \pm 0.08 \pm 0.03$	_	$-0.71 \pm 0.13 \pm 0.02$
$ ho(C_{\pi^+\pi^-},S_{\pi^+\pi^-})$	-0.06	-0.10	_	0.38
$\mathcal{B}_{\pi^+\pi^-} imes 10^6$	$5.5\pm0.4\pm0.3$	$5.04 \pm 0.21 \pm 0.18$	$5.02 \pm 0.33 \pm 0.35$	$5.08 \pm 0.17 \pm 0.37$
$C_{K^+K^-}$	_	_	_	$0.14 \pm 0.11 \pm 0.03$
$S_{K^+K^-}$	_	_	_	$0.30 \pm 0.12 \pm 0.04$
$ ho(C_{K^+K^-},S_{K^+K^-})$	_	_	_	0.02
$\mathcal{B}_{K^+K^-} imes 10^6$	_	$38^{+10}_{-9} \pm 7$	$25.8 \pm 2.2 \pm 1.7$	$23.0 \pm 0.7 \pm 2.3$
${\cal A}_{\pi^+\pi^0}$	$-0.03 \pm 0.08 \pm 0.01$	$-0.025 \pm 0.043 \pm 0.007$	_	_
$\mathcal{B}_{\pi^+\pi^0} imes 10^6$	$5.02 \pm 0.46 \pm 0.29$	$5.86 \pm 0.26 \pm 0.38$	_	_
$C_{\pi^0\pi^0}$	$-0.43 \pm 0.26 \pm 0.05$	$0.44^{+0.53}_{-0.52} \pm 0.17$	_	_
$\mathcal{B}_{\pi^0\pi^0} imes 10^6$	$1.83 \pm 0.21 \pm 0.13$	$2.3_{-0.5-0.3}^{+0.4+0.2}$	_	_

- LHCb results are published in
 - JHEP 10 (2012) 037 (Branching ratios)
 - JHEP 10 (2013) 183 (CP asymmetries)

Note: new Belle result included

$B^0 \rightarrow \pi^+\pi^-$ decay amplitude

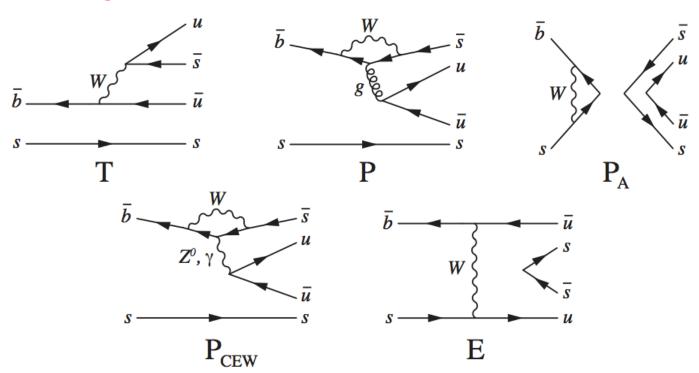


$$A_{\pi^{+}\pi^{-}} = D\left(e^{i\gamma} - de^{i\vartheta}\right)$$
 $\bar{A}_{\pi^{+}\pi^{-}} = D\left(e^{-i\gamma} - de^{i\vartheta}\right)$

$$D = A\lambda^3 R_b \left(-T - P^u - c_u P^u_{CEW} - P^u_A + P^t + c_u P^t_{CEW} + P^t_A - E \right)$$

$$G = A\lambda^{3} \left(-P^{c} - c_{u}P_{CEW}^{c} - P_{A}^{c} + P^{t} + c_{u}P_{CEW}^{t} + P_{A}^{t} \right) \qquad de^{i\vartheta} = \frac{G}{I}$$

$B_s \rightarrow K^+K^-$ decay amplitude



Same diagrams as $B^0 \rightarrow \pi^+\pi^-$ with $d \leftarrow \rightarrow$ s exchange (U-spin symmetry)

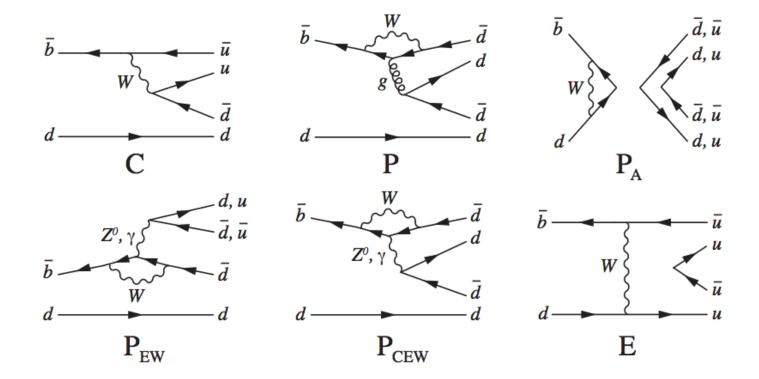
$$A_{K^+K^-} = D' \frac{\lambda}{1-\lambda^2/2} \left(e^{i\gamma} - \frac{1-\lambda^2}{\lambda^2} d' e^{i\vartheta'} \right) \quad \bar{A}_{K^+K^-} = D' \frac{\lambda}{1-\lambda^2/2} \left(e^{-i\gamma} - \frac{1-\lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$D' = A\lambda^{3}R_{b} \left(-T' - P'^{u} - c_{u}P'^{u}_{CEW} - P'^{u}_{A} + P'^{t} + c_{u}P'^{t}_{CEW} + P'^{t}_{A} - E' \right)$$

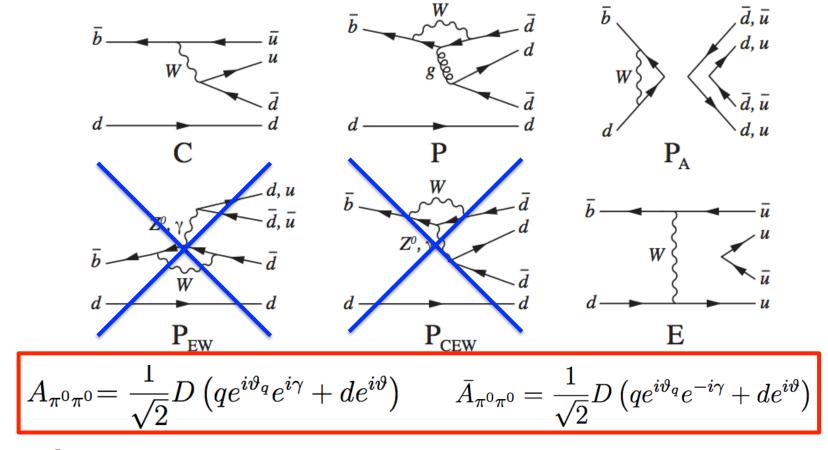
$$G' = A\lambda^{3} \left(-P'^{c} - c_{u}P'^{c}_{CEW} - P'^{c}_{A} + P'^{t} + c_{u}P'^{t}_{CEW} + P'^{t}_{A} \right)$$

$$d'e^{i\vartheta'} = \frac{G'}{D'}$$

$B^0 \rightarrow \pi^0 \pi^0$ decay amplitude



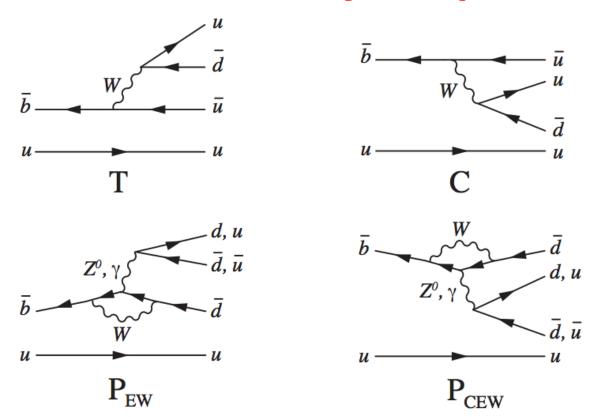
$B^0 \rightarrow \pi^0 \pi^0$ decay amplitude



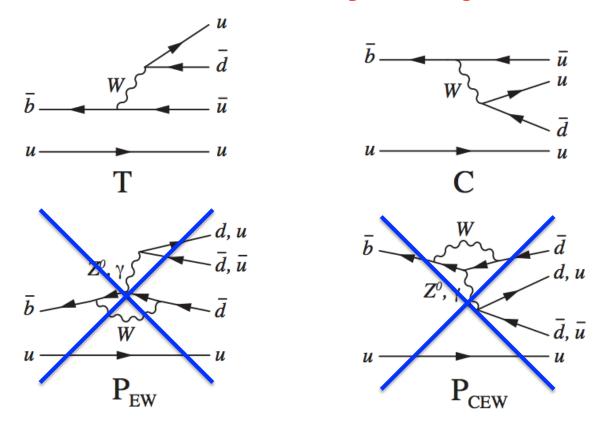
$$H = A\lambda^{3}R_{b} \left[-C + P^{u} + (c_{d} - c_{u})P_{EW}^{u} + c_{d}P_{CEW}^{u} + P_{A}^{u} - P_{A}^{t} - (c_{d} - c_{u})P_{EW}^{t} - c_{d}P_{CEW}^{t} - P_{A}^{t} + E \right] \qquad qe^{i\vartheta_{q}} = \frac{H}{D}$$

Assuming isospin and neglecting contributions from EW penguins

$B^+ \rightarrow \pi^+ \pi^0$ decay amplitude



$B^+ \rightarrow \pi^+ \pi^0$ decay amplitude



$$A_{\pi^+\pi^0} = rac{1}{\sqrt{2}} D\left(1 + q e^{i\vartheta_q}\right) e^{i\gamma}, \qquad ar{A}_{\pi^-\pi^0} = rac{1}{\sqrt{2}} D\left(1 + q e^{i\vartheta_q}\right) e^{-i\gamma},$$

Assuming isospin and neglecting contributions from EW penguins

Translating amplitudes to CPV coefficients and BRs

$$C_{\pi^{+}\pi^{-}} = -\frac{2d\sin(\vartheta)\sin(\gamma)}{1 - 2d\cos(\vartheta)\cos(\gamma) + d^{2}},$$

$$S_{\pi^+\pi^-} = -\frac{\sin(2\beta + 2\gamma) - 2d\cos(\vartheta)\sin(2\beta + \gamma) + d^2\sin(2\beta)}{1 - 2d\cos(\vartheta)\cos(\gamma) + d^2},$$

$$C_{\pi^0\pi^0} = -\frac{2dq\sin(\vartheta_q - \vartheta)\sin(\gamma)}{q^2 + 2dq\cos(\vartheta_q - \vartheta)\cos(\gamma) + d^2},$$
 Only direct CPV measured for B⁰ $\rightarrow \pi^0\pi^0$

$$C_{K^+K^-} = \frac{2\tilde{d}'\sin(\vartheta')\sin(\gamma)}{1 + 2\tilde{d}'\cos(\vartheta')\cos(\gamma) + \tilde{d}'^2},$$

$$C_{K^+K^-} = \frac{2\tilde{d}'\sin(\vartheta')\sin(\gamma)}{1 + 2\tilde{d}'\cos(\vartheta')\cos(\gamma) + \tilde{d}'^2}, \qquad S_{K^+K^-} = -\frac{\sin(-2\beta_s + 2\gamma) + 2\tilde{d}'\cos(\vartheta')\sin(-2\beta_s + \gamma) + \tilde{d}'^2\sin(-2\beta_s)}{1 + 2\tilde{d}'\cos(\vartheta')\cos(\gamma) + \tilde{d}'^2},$$

$$\mathcal{A}_{\pi^+\pi^0}=0,$$

Direct CPV in B⁺ $\rightarrow \pi^+\pi^0$ identically zero

$$\mathcal{B}_{\pi^+\pi^-} = F(B^0 \to \pi^+\pi^-)|D|^2(1 - 2d\cos(\theta)\cos(\gamma) + d^2),$$

$$\mathcal{B}_{\pi^+\pi^0} = F(B^+ \to \pi^+\pi^0) \frac{|D|^2}{2} (1 + q^2 + 2q\cos(\vartheta_q))$$

$$\mathcal{B}_{\pi^0\pi^0} = F(B^0 \to \pi^0\pi^0) \frac{|D|^2}{2} (q^2 + 2dq \cos(\theta_q - \theta) \cos(\gamma) + d^2)$$

$$\mathcal{B}_{K^+K^-} = F(B_s^0 \to K^+K^-) \frac{\lambda^2}{(1 - \lambda^2/2)^2} |D'|^2 (1 + 2\tilde{d}'\cos(\vartheta')\cos(\gamma) + \tilde{d}'^2).$$

$$ilde{d'} = d'(1 - \lambda^2)/\lambda^2$$

Recap

•
$$C_{\pi+\pi^-} = f_1(d, \vartheta, \gamma)$$

•
$$S_{\pi+\pi-} = f_2(d, \vartheta, \gamma, \beta)$$

•
$$C_{K+K-} = f_3(d', \vartheta', \gamma)$$

•
$$S_{K+K-} = f_4(d', \vartheta', \gamma, \beta_s)$$

•
$$C_{\pi 0\pi 0} = f_5(d, q, \vartheta, \vartheta_q, \gamma)$$

•
$$B_{\pi+\pi-} = f_6(|D|, d, \vartheta, \gamma)$$

•
$$B_{K+K-} = f_7(|D'|, d', \vartheta', \gamma)$$

•
$$B_{\pi0\pi0} = f_8(|D|, d, q, \vartheta, \vartheta_q, \gamma)$$

•
$$B_{\pi+\pi 0} = f_9(|D|, q, \vartheta_q)$$

CKM angles γ , β , β s

Hadronic parameters d, ϑ , d', ϑ' , q, ϑ_q , |D|, |D'|

[PLB 459 (1999) 306 and others]

- Using CP asymmetries and BRs of $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
 - 9 unknowns: d, d', θ , θ' , |D|, |D'|, γ , β , $-2\beta_s$
 - 6 constraints: $C_{\pi\pi}$, $S_{\pi\pi}$, $B_{\pi\pi}$, C_{KK} , S_{KK} , B_{KK}
 - Constrain the sign of $A_{KK}^{\Delta\Gamma}$

Experimental inputs

Quantity	Value	Source
$\overline{}}$	-0.30 ± 0.05	Our average
$S_{\pi^+\pi^-}$	-0.66 ± 0.06	Our average
$ ho(C_{\pi^+\pi^-},S_{\pi^+\pi^-})$	-0.007	Our average
$C_{K^+K^-}$	0.14 ± 0.11	LHCb
$S_{K^+K^-}$	0.30 ± 0.13	LHCb
$ \rho(C_{K^+K^-}, S_{K^+K^-}) $	0.02	LHCb
$\mathcal{B}_{\pi^+\pi^-} imes 10^6$	5.10 ± 0.19	HFAG
$\mathcal{B}_{K^+K^-} imes 10^6$	24.5 ± 1.8	HFAG
$\sin 2eta$	0.682 ± 0.019	HFAG
$m_{B^0} [{ m MeV}/c^2]$	5279.55 ± 0.26	PDG
$m_{B_{\circ}^0} \; [{ m MeV}/c^2]$	5366.7 ± 0.4	PDG
$m_{\pi^+} \; [{ m MeV}/c^2]$	139.57018 ± 0.00035	PDG
$m_{K^+} [{ m MeV}/c^2]$	493.677 ± 0.013	PDG
$ au_{B^0} \; [ext{ps}]$	1.519 ± 0.007	HFAG
$ au_{B_{s}^{0}} \; [ext{ps}]$	1.516 ± 0.011	HFAG
$\Delta \mathring{\Gamma}_s/\Gamma_s$	0.160 ± 0.020	LHCb
$\tau(B_s^0 \to K^+ K^-) \text{ [ps]}$	1.452 ± 0.042	LHCb

$$A_{K^{+}K^{-}}^{\Delta\Gamma} = -\frac{\cos(-2\beta_{s}+2\gamma)+2\tilde{d}'\cos(\vartheta')\cos(-2\beta_{s}+\gamma)+\tilde{d}'^{2}\cos(-2\beta_{s})}{1+2\tilde{d}'\cos(\vartheta')\cos(\gamma)+\tilde{d}'^{2}} < 0 \quad \text{LHCb-PAPER-2014-011}$$

 Need to assume U-spin symmetry to reduce the number of unknown parameters

- $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ are U-spin symmetry partners
- Assuming perfect U-spin symmetry one gets

$$- d = d', \theta = \theta', |D| = |D'|$$

- The equalities d = d' and $\theta = \theta'$ do not receive U-spin breaking corrections within factorization
 - But non-factorizable U-spin contributions may still be large
- By contrast, the U-spin equality |D| = |D'| is already broken in factorization
- Using QCD sum rules one has $\left|\frac{D'}{D}\right|_{\rm fact}=1.41^{+0.20}_{-0.11}.$

(determination of angle γ)

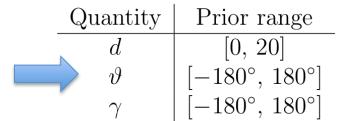
• One further unknown can be eliminated by substituting $-2\beta_s$ in the equations with its SM expression

SM expression of $-2\beta_s$ up to λ^4 terms

$$-2\beta_s = -2\lambda^2 \bar{\eta} \left[1 + \lambda^2 \left(1 - \bar{\rho} \right) \right]$$

$$\bar{\rho} = \frac{\sin \beta \cos \gamma}{\sin(\beta + \gamma)} \quad \bar{\eta} = \frac{\sin \beta \sin \gamma}{\sin(\beta + \gamma)}$$

Parameters extracted with flat priors



Note:
$$|\mathbf{D}|$$
 is eliminated by solving eq. $\mathcal{B}_{\pi^+\pi^-} = F(B^0 \to \pi^+\pi^-)|D|^2(1 - 2d\cos(\vartheta)\cos(\gamma) + d^2)$,

Note: |D'| is eliminated by
$$|D'| = \left| \frac{D'}{D} \right|_{fact.} |D|$$

(determination of $-2\beta_s$)

• In order to determine $-2\beta_s$ we constrain the γ angle to the world average value from tree decays whereas $-2\beta_s$ is left as a free parameter

$$\gamma = (70.1 \pm 7.1)^{\circ}$$
 Average of BaBar, Belle and LHCb (by UTFit)

Note: |D| is eliminated solving the equation

$$\mathcal{B}_{\pi^+\pi^-} = F(B^0 \to \pi^+\pi^-)|D|^2(1 - 2d\cos(\theta)\cos(\gamma) + d^2),$$

Note: |D'| is eliminated using the equation

$$|D'| = \left| \frac{D'}{D} \right|_{fact.} |D|$$

Parameters extracted with flat priors

Quantity	Prior range
d	[0, 20]
artheta	$[-180^{\circ}, 180^{\circ}]$
$-2\beta_{s}[rad]$	$\lfloor -\pi,\pi floor$

Effect of non-factorizable U-spin breaking

Non-factorizable U-spin breaking effects are parameterized by

$$|D'| = \left| \frac{D'}{D} \right|_{\text{fact}} |D| \left| 1 + r_D e^{i\vartheta_{r_D}} \right|,$$
$$d'e^{i\vartheta'} = de^{i\vartheta} \frac{1 + r_G e^{i\vartheta_{r_G}}}{1 + r_D e^{i\vartheta_{r_D}}}.$$

 $\rm r_{\rm D}$ and $\rm r_{\rm G}$ are relative magnitudes and $\theta_{\rm rD}$ and $\theta_{\rm rG}$ are strong phase shifts caused by the breaking

Flat priors on U-spin breaking parameters

$$- r_D = [0, κ], r_G = [0, κ]$$

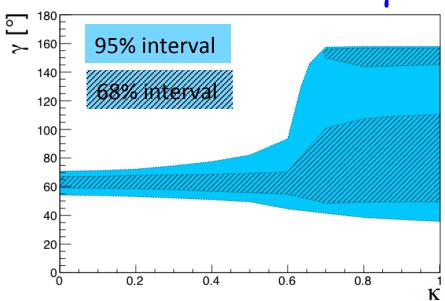
 $- \theta_{rD} = [-π, π], \theta_{rG} = [-π, π]$

- κ represents the maximum non-factorizable
 U-spin breaking allowed for in the analysis
 - Sloppily speaking: κ = 0.3 corresponds to up to 30% breaking

Effect of non-factorizable U-spin breaking

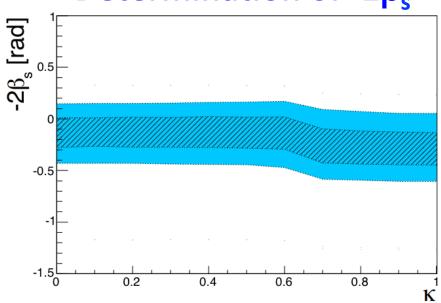
(U-spin method)

Determination of γ



- Sensitivity on γ is good up to $\kappa = 0.6$
- For $\kappa > 0.6$ sensitivity on γ deteriorates very quickly

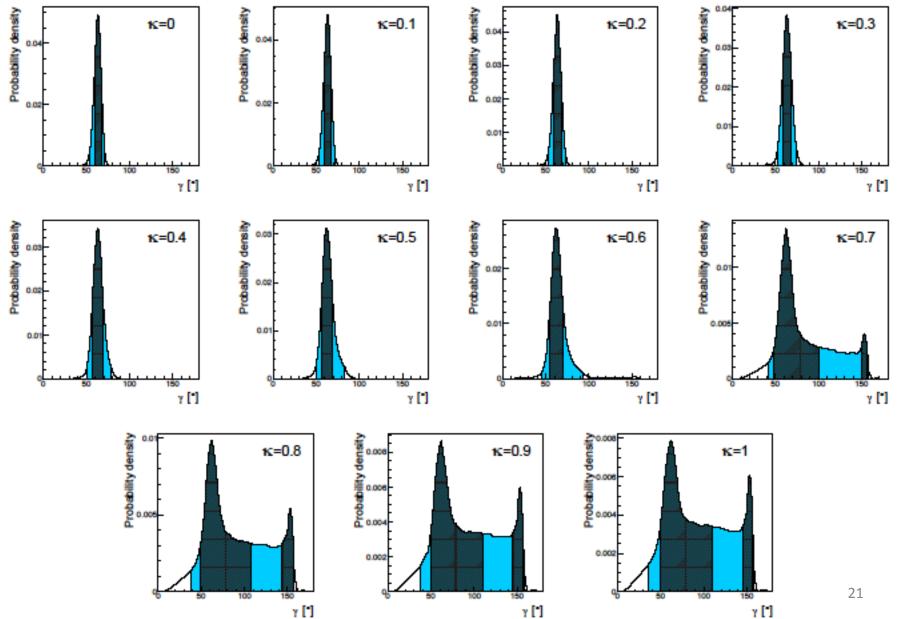
Determination of $-2\beta_s$



• Sensitivity on $-2\beta_s$ almost unaffected up to $\kappa=1$, but shifted toward decreasing values for $\kappa>0.6$

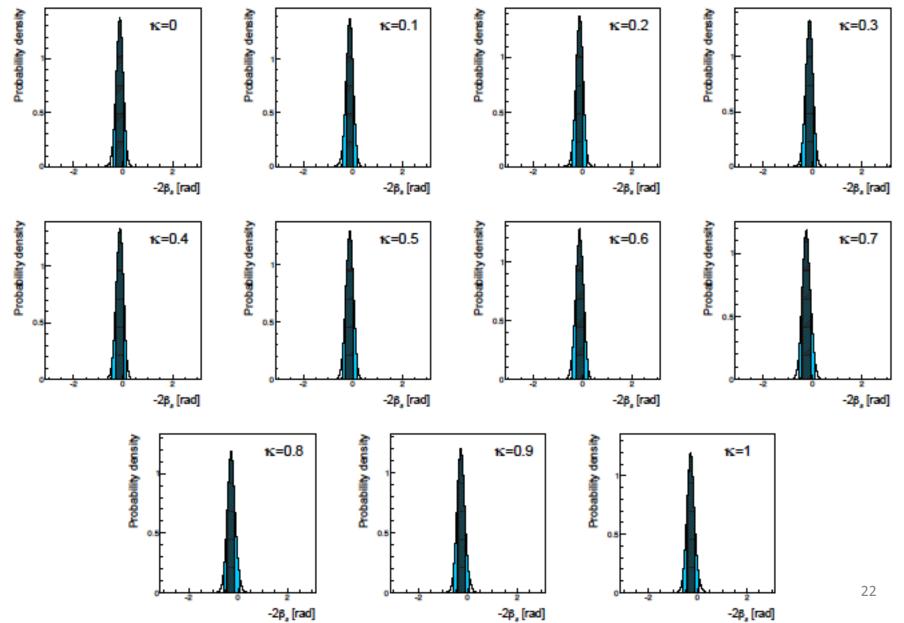
PDF for γ vs U-spin breaking

(U-spin method)



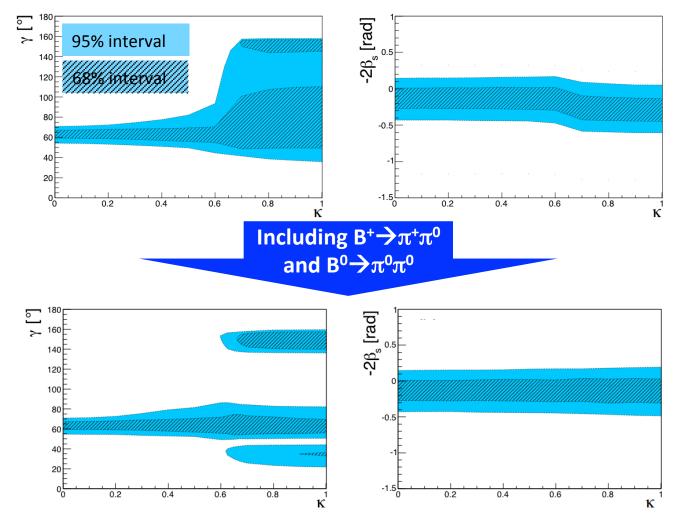
PDF for $-2\beta_s$ vs U-spin breaking

(U-spin method)



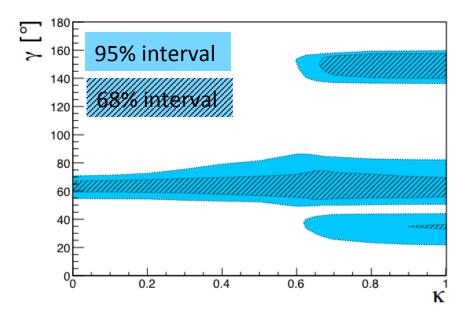
Inclusion of B⁺ $\rightarrow \pi^+\pi^0$ and B⁰ $\rightarrow \pi^0\pi^0$ (following JHEP 10 (2012) 029)

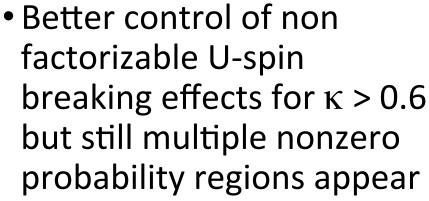
Information from B⁺ $\rightarrow \pi^{+}\pi^{0}$ and B⁰ $\rightarrow \pi^{0}\pi^{0}$ helps to better control non-factorizable U-spin breaking effects

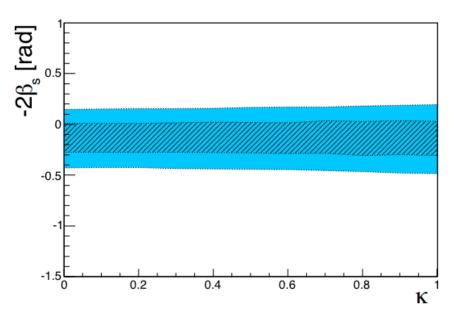


Inclusion of B⁺ $\rightarrow \pi^+\pi^0$ and B⁰ $\rightarrow \pi^0\pi^0$

(following JHEP 10 (2012) 029)



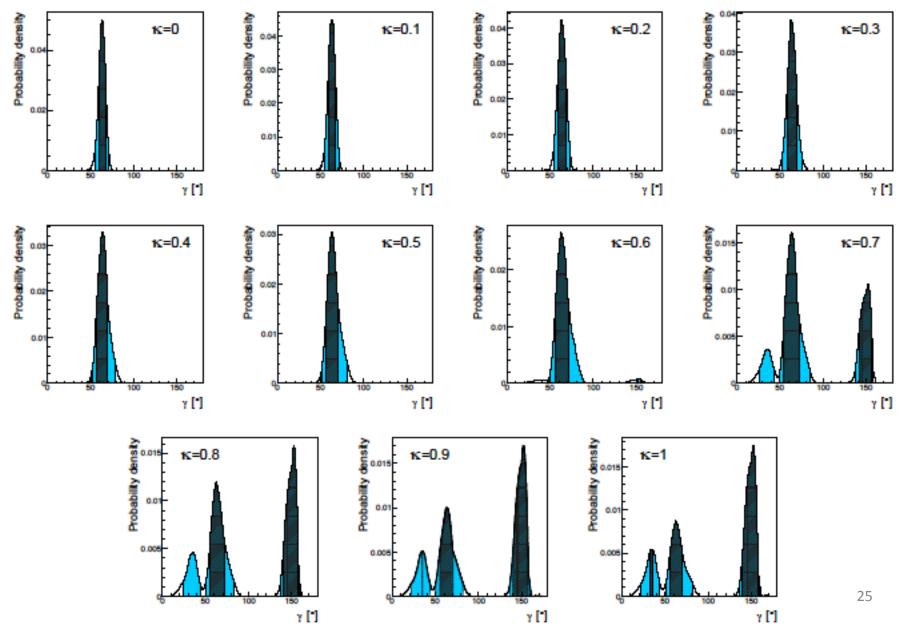




• The shift towards decreasing values of $-2\beta_s$ for $\kappa > 0.6$ disappears completely \rightarrow robust determination up to 100% non-factorizable U-spin breaking

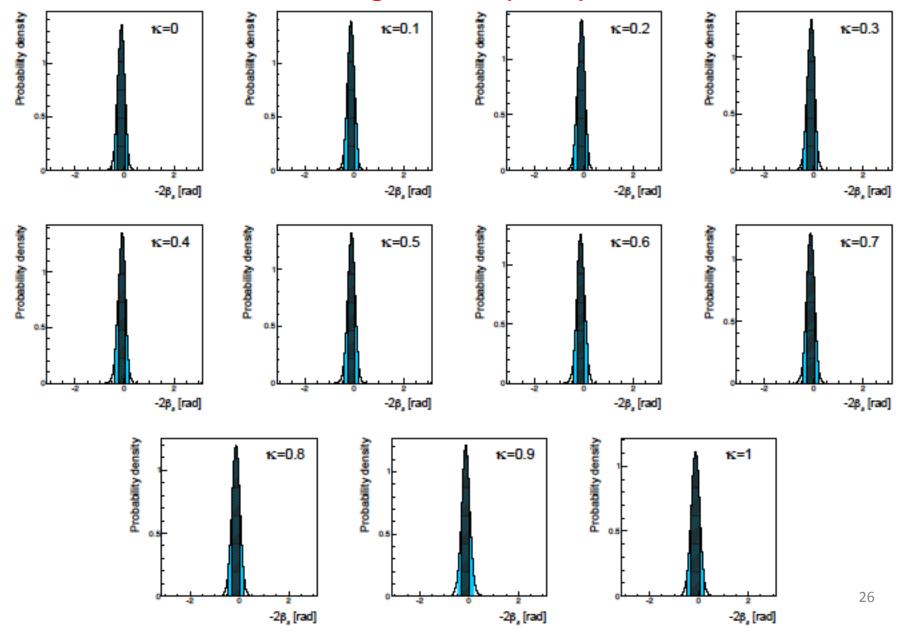
PDF for γ vs U-spin breaking

(following JHEP 10 (2012) 029)



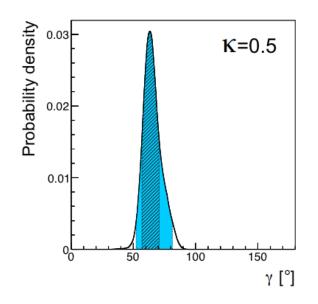
PDF for $-2\beta_s$ vs U-spin breaking

(following JHEP 10 (2012) 029)

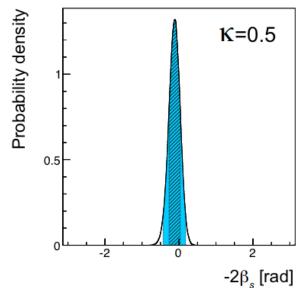


Numerical results for 50% U-spin breaking

(following JHEP 10 (2012) 029)



Quantity	Result at 68% prob.	Result at 95% prob.
\overline{d}	[0.33, 0.57]	[0.28, 0.79]
ϑ	$[139^{\circ}, 157^{\circ}]$	$[125^{\circ}, 164^{\circ}]$
d'	[0.34, 0.50]	[0.28, 0.65]
artheta'	$[132^{\circ}, 160^{\circ}]$	$[119^{\circ}, 176^{\circ}]$
q	[1.04, 1.21]	[0.94, 1.30]
$artheta_q$.	$[-82^{\circ}, -58^{\circ}]$	$[-88^{\circ}, -35^{\circ}]$
$ D \; [\text{MeV}^{\frac{1}{2}} \text{ps}^{-\frac{1}{2}}]$	[0.101, 0.113]	[0.094, 0.118]
$ D' [\text{MeV}^{\frac{1}{2}} \text{ps}^{-\frac{1}{2}}]$	[0.129, 0.193]	[0.097, 0.228]
γ	$[57^{\circ}, 71^{\circ}]$	$[52^{\circ}, 82^{\circ}]$



Quantity	Result at 68% prob.	Result at 95% prob.
\overline{d}	[0.37, 0.59]	[0.31, 0.77]
artheta	$[142^{\circ}, 157^{\circ}]$	$[132^{\circ}, 163^{\circ}]$
d'	[0.34, 0.52]	[0.29, 0.70]
artheta'	$[133^{\circ}, 160^{\circ}]$	$[119^{\circ}, 176^{\circ}]$
q	[1.04, 1.21]	[0.95, 1.30]
$artheta_q$	$[-78^{\circ}, -57^{\circ}]$	$[-85^{\circ}, 38^{\circ}]$
$ D [\text{MeV}^{\frac{1}{2}} \text{ps}^{-\frac{1}{2}}]$	[0.100, 0.111]	[0.094, 0.116]
$ D' [\text{MeV}^{\frac{1}{2}} \text{ps}^{-\frac{1}{2}}]$	[0.122, 0.187]	[0.089, 0.221]
$-2\beta_s$ [rad]	[-0.28, 0.02]	[-0.44, 0.17]

Summary

- The determination of γ and $-2\beta_s$ using the decays $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow \pi^0\pi^0$, $B^\pm \rightarrow \pi^\pm\pi^0$ and $B_s \rightarrow K^+K^-$ has been studied
- Two methods have been applied
 - The first as in PLB 459 (1999) 306
 - uses observables only from $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
 - relies on the use of U-spin symmetry
 - The second as in JHEP 10 (2012) 029
 - uses also information from $B^0 \rightarrow \pi^0 \pi^0$ and $B^{\pm} \rightarrow \pi^{\pm} \pi^0$
 - relies on the use of both isospin and U-spin symmetries

Summary

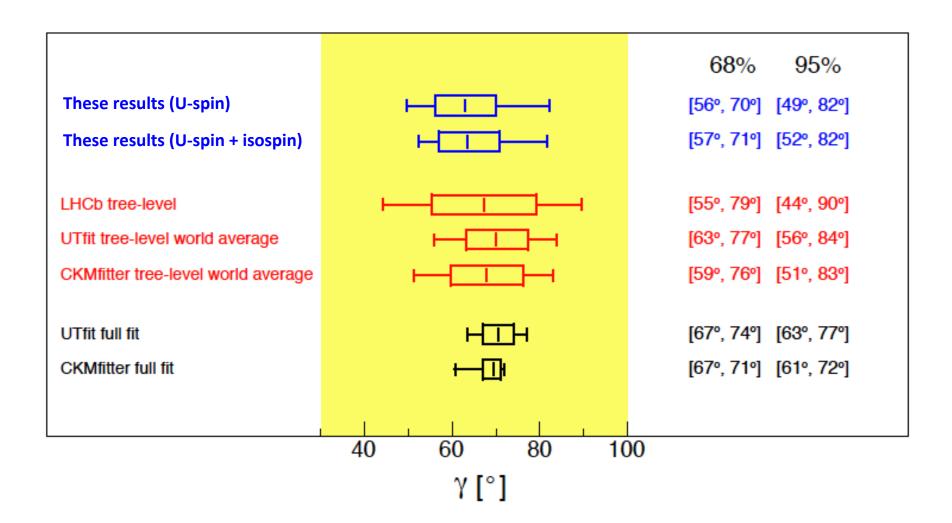
- The impact of non-factorizable U-spin breaking corrections on the determination of γ and -2 β_s has been studied up to 100% breaking
- The two methods give similar results with up to ~50% breaking
 - − The inclusion of information from B⁺ \rightarrow π⁺π⁰ and B⁰ \rightarrow π⁰π⁰ gives more robust results against non-factorizable U-spin breaking values larger than 50%

$$\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$$
$$-2\beta_s = -0.12^{+0.14}_{-0.16} \text{ rad}$$

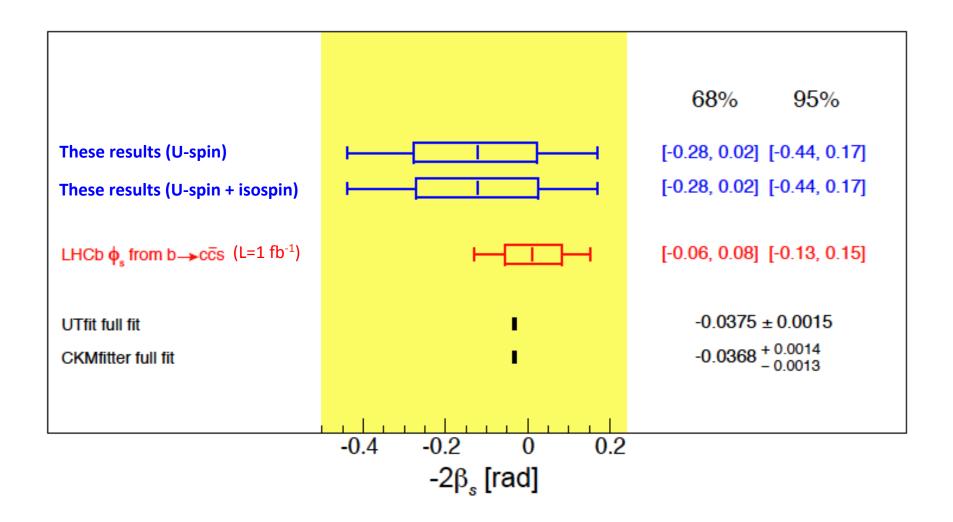
Up to 50% nonfactorizable U-spin breaking effects allowed for

 The results have been checked to be robust with respect to the choice of priors and of the adopted parameterization of U-spin breaking

Summary table for γ (50% non-factorizable U-spin breaking included)



Summary table for $-2\beta_s$ (50% non-factorizable U-spin breaking included)



Conclusions

- Determination of γ from charmless two-body B decays is compatible and competitive with tree-level determination if non-factorizable U-spin breaking up to 50% is allowed for
 - —However, due to the impact of U-spin symmetry breaking, this measurement will only improve slightly with additional statistics, as sensitivity quickly saturates with such a large level of breaking
- The impact of U-spin breaking on the determination of -2 β_s is much smaller than for γ
 - -up to 100% non-factorizable breaking, the correction is marginal
 - -The current uncertainty is only 50% larger with respect to that obtained from the golden $B_s \rightarrow J/\psi KK$ mode, at equal luminosity of $B_s \rightarrow K^+K^-$ measurement (1 fb⁻¹ so far)
 - -Significant improvements are expected by increasing the statistics
 - Update of B_s→K+K-CPV analysis to full 3 fb-1 ongoing

Questions to theory

- Are you comfortable with O(50%) U-spin breaking?
 - in addition to the breaking that can be estimated from factorization

Questions to theory

- Are you comfortable with O(50%) U-spin breaking?
 - in addition to the breaking that can be estimated from factorization
- If not, are you comfortable with 100%?

Questions to theory

- Are you comfortable with O(50%) U-spin breaking?
 - in addition to the breaking that can be estimated from factorization
- If not, are you comfortable with 100%?
- Can we make anything better?