Latest results on ϕ_s

Diego Martínez Santos
(on behalf of LHCb collaboration)
Introduction

- ϕ_S results from LHCb

- Introduction
- Analysis overview
- Results
- Prospects
- Results on penguin pollution
What (and why) Φ_s
Φ_s from B_s → J/ψ (→μμ) KK

B_s mass eigenstates:

\[
\begin{align*}
|B^+_L\rangle &= p|B_s\rangle + q|\bar{B}_s\rangle \\
|B^+_R\rangle &= p|B_s\rangle - q|\bar{B}_s\rangle
\end{align*}
\]

- q/p: complex number. |q/p| ≠ 1 → CPV in mixing
- \(A_f, \bar{A}_f\) complex amplitudes. |\(A_f/\bar{A}_f\) ≠ 1 → CPV in decay

Even if not CPV in mixing or decay, you can generate CPV in the interference if

\[
\sin(\phi_s) \equiv \sin\left(-\arg\left(\frac{q A_f}{p \bar{A}_f}\right)\right) \neq 0
\]

Main (but not only) experimental signature of a non-zero \(\phi_s\): it generates wiggles in the time-dependent angular distribution of the \(B_s \rightarrow J/\psi \phi \rightarrow \mu\mu KK\) final state particles. The frequency of the (potential) wiggles is known: \(\Delta m_s\).

\[
|\lambda| \equiv \left|\frac{q A_f}{p \bar{A}_f}\right| \sim 1
\]
Φ_s : Standard Model and New Physics sensitivity

SM prediction: \(\Phi_s = -2 \text{arg} \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) = -0.0363 \pm 0.0013 \) (*) Neglecting penguin contributions.

It is very precise, and sensitive to Physics Beyond the SM, specially to non-MFV New physics …. which is accessible even if the NP is at a high scales.

→ Illustrative (brute force) test: calculate non-MFV SUSY contributions setting all particle masses \(\sim 10 \) TeV

Those potential effects are within reach of current experimental precision!
Analysis
Analysis strategy: Fit the time dependent angular distribution, considering experimental effects:

- **Background:** Events are weighted according to position in $J/\psi KK$ mass spectrum.

- Angular distributions are distorted on data because of **non-flat angular acceptance**. Simulation (weighted according to kinematics seen on data) is used to correct for this.

- **Lifetime acceptance.** Samples from different trigger lines are used to unfold trigger biases. Per event weights are used to correct for track reconstruction biases.
Φ_s from B_s → J/ψ (μμ) KK

Analysis strategy: Fit the time dependent angular distribution, considering experimental effects:

- **Lifetime resolution**: Non-perfect time resolution (46 fs, still much smaller than oscillation period, 350 fs) convolved with the pdf. Main effect is a ~25% dilution of the amplitude of the wiggles. Measured on data using prompt J/ψ events.

- **Flavour tagging**: The initial flavour of the B_s is determined either by a lepton/kaon from the other B, and/or by a kaon from the fragmentation. The performance of these taggers is calibrated with control samples such as B^+→J/ψK^+, B_d→D^*+μν and B_s→D_s^−π^+.
Φ_s from $B_s \to J/\psi (\not>\mu\mu) \pi\pi$

- Similar analysis methodology than $B_s \to J/\psi $KK. Some differences:
 - Deal with several $\pi^+\pi^-$ resonances (implies a time dependent Dalitz analysis)
 - Almost no sensitivity to $\Delta \Gamma_s \rightarrow$ less sensitive to decaytime acceptance
Results and prospects
Φ_s from B_s → J/ψ (→μμ) hh

Φ_s (B_s → J/ψππ), 3fb^{-1}

0.070±0.068±0.008 rad

SM prediction: \(\Phi_s = -2\text{arg} \left(\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) = -0.0363±0.0013 \) (*)
\(\Phi_s \) from \(B_s \to J/\psi (\not\mu \mu) \) hh

\(\Phi_s (B_s \to J/\psi \pi \pi) \), 3\(\text{fb}^{-1} \)

\[
0.070 \pm 0.068 \pm 0.008 \text{ rad}
\]

SM prediction:

\[
\Phi_s = -2 \arg \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*}\right) = -0.0363 \pm 0.0013^{(*)}
\]

\(\Phi_s (B_s \to J/\psi \mathrm{KK}) \), 3\(\text{fb}^{-1} \)

\[
-0.058 \pm 0.049 \pm 0.006 \text{ rad}
\]
Φ_s from B_s → J/ψ (μμ) hh

Φ_s (B_s → J/ψππ), 3fb⁻¹

0.070±0.068±0.008 rad

SM prediction: Φ_s = -2arg \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) = -0.0363±0.0013(*)

Φ_s (B_s → J/ψKK), 3fb⁻¹

-0.058±0.049±0.006 rad

NEW

Combined, 3fb⁻¹

φ_s = -0.010±0.040 rad

LHCb-PAPER-2014-059
In preparation
Other observables from $B_s \to J/\psi KK$

<table>
<thead>
<tr>
<th>Observable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_s [ps^{-1}]$</td>
<td>$0.6603 \pm 0.0027 \pm 0.0015$</td>
</tr>
<tr>
<td>$\Delta \Gamma_s [ps^{-1}]$</td>
<td>$0.0805 \pm 0.0091 \pm 0.0033$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
</tbody>
</table>

(NEW: world’s most precise measurements of basic B_s physics observables)
Other observables from $B_s \to J/\psi KK$

<table>
<thead>
<tr>
<th>Observable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_s [\text{ps}^{-1}]$</td>
<td>$0.6603 \pm 0.0027 \pm 0.0015$</td>
</tr>
<tr>
<td>$\Delta\Gamma_s [\text{ps}^{-1}]$</td>
<td>$0.0805 \pm 0.0091 \pm 0.0033$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
</tbody>
</table>

First polarization dependent results (to study penguin pollutions)

<table>
<thead>
<tr>
<th>Observable</th>
<th>value</th>
<th>Observable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\lambda_0</td>
<td>$</td>
<td>$1.012 \pm 0.058 \pm 0.013$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda_{</td>
<td></td>
<td>}/\lambda_0</td>
</tr>
<tr>
<td>$</td>
<td>\lambda_{\perp}/\lambda_0</td>
<td>$</td>
<td>$1.02 \pm 0.12 \pm 0.05$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda_S/\lambda_0</td>
<td>$</td>
<td>$0.86 \pm 0.12 \pm 0.03$</td>
</tr>
</tbody>
</table>

Everything compatible with no polarization dependence
In addition to $B_s \rightarrow J/\psi KK$ and $B_s \rightarrow J/\psi \pi \pi$ LHCb measured Φ_s in $B_s \rightarrow D_s D_s$:

$$\phi_s = 0.02 \pm 0.17 \text{ (stat)} \pm 0.02 \text{ (syst)} \text{ rad}, \quad |\lambda| = 0.91 \pm 0.18 \text{ (stat)} \pm 0.02 \text{ (syst)}$$

arXiv:1409.4619

See M.Jung’s talk at 12.05: https://indico.cern.ch/event/324660/session/4/contribution/43

And also plans to:

- $B_s \rightarrow \psi(2S)KK$ (~10% of the statistics power of $B_s \rightarrow J/\psi KK$)
- $B_s \rightarrow J/\psi KK$ (high KK mass)
- $B_s \rightarrow J/\psi KK$ with the J/ψ going to electrons

Altogether could give an extra ~25% reduction of the uncertainty in Φ_s
ATLAS and CMS also study $B_s \to J/\psi \phi \to \mu\mu KK$.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Lumi. (fb$^{-1}$)</th>
<th>$\Delta \Gamma_s$ (ps$^{-1}$)</th>
<th>Φ_s (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9</td>
<td>$0.053 \pm 0.021 \pm 0.010$</td>
<td>$0.12 \pm 0.25 \pm 0.05$</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>$0.096 \pm 0.014 \pm 0.007$</td>
<td>$-0.03 \pm 0.11 \pm 0.03$</td>
</tr>
</tbody>
</table>

\(\Phi_s \) (world average)

ATLAS and CMS also study \(B_s \rightarrow J/\psi \Phi \rightarrow \mu\mu KK \)

HFAG private/unofficial world average yields

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Lumi. (fb(^{-1}))</th>
<th>4.9</th>
<th>20.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \Gamma_s) (ps(^{-1}))</td>
<td>0.053(\pm)0.021(\pm)0.010</td>
<td>0.096(\pm)0.014(\pm)0.007</td>
<td></td>
</tr>
<tr>
<td>(\Phi_s) (rad)</td>
<td>0.12(\pm)0.25(\pm)0.05</td>
<td>-0.03(\pm)0.11(\pm)0.03</td>
<td></td>
</tr>
</tbody>
</table>

arxiv.org/abs/1407.1796

CMS-PAS-BPH-13-012

HFAG world average, unofficial

\(\Phi_s = -0.015\pm0.036 \) rad
Prospects

\[\text{Bs} \to \text{J/}\psi \text{KK} \]
\[\text{Bs} \to \text{J/}\psi \text{KK} + \text{Bs} \to \text{J/}\psi\pi\pi \]

~2016

~ end of Run-II

… and with LHCb upgrade the sensitivity can go below 0.01 rad
Prospects

$\text{Bs} \rightarrow \text{J}/\psi KK$
$\text{Bs} \rightarrow \text{J}/\psi KK + \text{Bs} \rightarrow \text{J}/\psi \pi \pi$

~ 2016
$\sim \text{end of Run-II}$

... and with LHCb upgrade the sensitivity can go below 0.01 rad
Penguin Pollutions
Penguin contributions to Φ_s, are usually neglected because they are doubly Cabibbo suppressed.

However, these contributions cannot be calculated reliably from QCD.

S. Faller, R. Fleischer, T. Mannel arXiv:0810.4248 [hep-ph] propose a method to calculate the penguin pollution to Φ_s by analysing $B \rightarrow J/\psi \rho$ and/or $B_s \rightarrow J/\psi K^*$ data.
Penguin pollution

\(\mathbf{B} \rightarrow \mathbf{J/ψρ} \) analysed full dataset

- CPV in time dependent Dalitz analysis, measure an effective \(2β, \) \(2β_{\text{eff}} \)

\[
\lambda_i \equiv \frac{q_i}{p_i} A_i, \quad 2β_{\text{eff}}^i \equiv -\arg(η_i λ_i)
\]

- Apply SU(3) symmetry (\(θ' \rightarrow θ, a' \rightarrow -εa \)) to convert result into estimate of penguin pollution in \(Φ_s \) or \(2β^\psi K_s \)

\[
δ_P = -\arg \left(\frac{1 + εa_f e^{iθ_f} e^{-iγ}}{1 + εa_f e^{iθ_f} e^{iγ}} \right)
\]

\(ε = |V_{us}|^2/(1-|V_{us}|^2) = 0.0534 \)

\(δ_P \approx -ε \Delta 2β_f \)

\[
\Gamma(t) = N e^{-Γ dt} \left\{ \frac{|A|^2 + |A|^2}{2} + \frac{|A|^2 - |A|^2}{2} \cos(Δm dt) - i m(A^*A) \sin(Δm dt) \right\}
\]

\[
\Gamma(t) = N e^{-Γ dt} \left\{ \frac{|A|^2 + |A|^2}{2} - \frac{|A|^2 - |A|^2}{2} \cos(Δm dt) + i m(A^*A) \sin(Δm dt) \right\}
\]

\[
A = \sum_i A_i \quad \text{(sum over } π^+π^- \text{ resonant transversity amplitudes)}
\]

Using formalism PLB, 719, 383 (2013)
Penguin pollution

\[B \rightarrow J/\psi \rho \] analysed full dataset

Obtained:

\[|\delta_P| < 0.02 \text{ rad @ 95\% CL} \]

(half of the uncertainty on \(\Phi_s \)

- The above limit depends linearly on SU(3) breaking factor \(a/a' \)

- Consistent with theory estimations

PRELIMINARY
Penguin pollution

\(B_s \to J/\psi K^* \) experimental status

- Analysed with 370pb\(^{-1}\)
- Branching fraction
- Polarization amplitudes

\[
\begin{align*}
 f_L &= 0.50 \pm 0.08 \pm 0.02 \\
 f_\parallel &= 0.19^{+0.10}_{-0.08} \pm 0.02
\end{align*}
\]

\[
\frac{\text{BR}(B_s \to J/\psi K^{*0})}{\text{BR}(B_d \to J/\psi K^{*0})} = (3.43^{+0.34}_{-0.36} \pm 0.50)\%
\]

\[
\mathcal{B}(B_s^0 \to J/\psi K^{*0}) = (4.4^{+0.5}_{0.4} \pm 0.8) \times 10^{-5}
\]

SM expectations

\[
\begin{align*}
 \text{BR}(B_s \to J/\psi K^{*0}) &\approx 0.0333 \\
 \text{BR}(B_d \to J/\psi K^{*0}) &\approx 0\%
\end{align*}
\]

Expected similar penguin sensitivity than \(J/\psi \pi \pi \), but depends on central values
Conclusions

- New Φ_s result presented, in excellent agreement with the Standard Model

$\phi_s = -0.010\pm0.040 \text{ rad} \quad \text{(preliminary)}$
Conclusions

• New Φ_s result presented, in excellent agreement with the Standard Model

$$\phi_s = -0.010 \pm 0.040 \text{ rad} \quad (\text{preliminary})$$

• Precision can improve to <0.02 rad in Run-II, and <0.01 rad with LHCb upgrade

• Excellent experimental sensitivity to penguin contamination, need theory input for SU(3) factors

Bone, you are hard…

… but I am patient…

source: google osso duro
<table>
<thead>
<tr>
<th>Component</th>
<th>Fit fraction (%)</th>
<th>Transversity fractions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$\rho(770)$</td>
<td>65.6 ± 1.9</td>
<td>56.7 ± 1.8</td>
</tr>
<tr>
<td>$f_0(500)$</td>
<td>20.1 ± 0.7</td>
<td>1</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>7.8 ± 0.6</td>
<td>64 ± 4</td>
</tr>
<tr>
<td>$\omega(782)$</td>
<td>0.64$^{+0.19}_{-0.13}$</td>
<td>44 ± 14</td>
</tr>
<tr>
<td>$\rho(1450)$</td>
<td>9.0 ± 1.8</td>
<td>47 ± 11</td>
</tr>
<tr>
<td>$\rho(1700)$</td>
<td>3.1 ± 0.7</td>
<td>29 ± 12</td>
</tr>
</tbody>
</table>
\(\phi_{s}^{\phi\phi} \) from \(B_s \rightarrow \phi\phi \)

\[\phi_{s}^{\phi\phi} \equiv \text{arg} \left(\frac{q A (B_s \rightarrow \phi\phi)}{p A (B_s \rightarrow \phi\phi)} \right) \]

different quantity than the \(\Phi \)s I presented at the beginning of my talk
SM expectation is \(\phi_{s}^{\phi\phi} < 0.02 \)

Also measured through time dependent angular analysis. We have analysed the full 3 fb\(^{-1}\) dataset:

\[\phi_{s}^{\phi\phi} = -0.17 \pm 0.15 \pm 0.03 \]

In very good agreement with SM
Φ_s from $B_s \rightarrow J/\psi (\phi \mu \mu) \pi \pi$

<table>
<thead>
<tr>
<th>Sources</th>
<th>ϕ_s (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay time acceptance</td>
<td>±0.6</td>
</tr>
<tr>
<td>Mass acceptance</td>
<td>±0.3</td>
</tr>
<tr>
<td>Background time PDF</td>
<td>±0.2</td>
</tr>
<tr>
<td>Background mass distribution PDF</td>
<td>±0.6</td>
</tr>
<tr>
<td>Resonance model</td>
<td>±6.0</td>
</tr>
<tr>
<td>Resonance parameters</td>
<td>±0.7</td>
</tr>
<tr>
<td>Other fixed parameters</td>
<td>±0.4</td>
</tr>
<tr>
<td>Production asymmetry</td>
<td>±5.8</td>
</tr>
<tr>
<td>Total</td>
<td>±8.4</td>
</tr>
</tbody>
</table>
Apart from the wiggles, there are other terms in the pdf that have some sensitivity to Φ_s:
Φ_s from $B_s \to J/\psi (\not\tau \mu \mu)$ KK

| Source | Γ_s [ps$^{-1}$] | $\Delta \Gamma_s$ [ps$^{-1}$] | $|A_\perp|^2$ | $|A_0|^2$ | $\delta_{||}$ [rad] | δ_{\perp} [rad] | ϕ_s [rad] | $|\lambda|$ | Δm_s [ps$^{-1}$] |
|--|------------------------|-------------------------------|--------------|-----------|---------------------|---------------------|---------------|-----------|---------------------|
| Total stat. uncertainty | 0.0027 | 0.0091 | 0.0049 | 0.0034 | $^{+0.10}_{-0.17}$ | $^{+0.14}_{-0.15}$ | 0.049 | 0.019 | $^{+0.055}_{-0.057}$ |
| Mass factorisation | – | 0.0007 | 0.0031 | 0.0064 | 0.05 | 0.05 | 0.002 | 0.001 | 0.004 |
| Signal weights (stat.) | 0.0001 | 0.0008 | – | 0.0001 | – | – | – | – | – |
| Resonant background | 0.0001 | 0.0004 | 0.0004 | 0.0002 | 0.02 | 0.02 | 0.002 | 0.003 | 0.001 |
| B_c^+ background | 0.0005 | – | – | – | – | – | – | – | – |
| Angular resolution bias | – | – | 0.0006 | 0.0001 | $^{+0.02}_{-0.03}$ | 0.01 | – | – | – |
| Ang. efficiency (reweighting) | 0.0001 | – | 0.0011 | 0.0020 | 0.01 | – | 0.001 | 0.005 | 0.002 |
| Ang. efficiency (stat.) | 0.0001 | 0.0002 | 0.0011 | 0.0004 | 0.02 | 0.01 | 0.004 | 0.002 | 0.001 |
| Decay time resolution | – | – | – | – | – | – | 0.002 | 0.001 | 0.005 |
| Trigger efficiency (stat.) | 0.0011 | 0.0009 | – | – | – | – | – | – | – |
| Track reconstruction (simul.) | 0.0007 | 0.0029 | 0.0005 | 0.0006 | $^{+0.01}_{-0.02}$ | 0.002 | 0.001 | 0.001 | 0.006 |
| Track reconstruction (stat.) | 0.0005 | 0.0002 | – | – | – | – | – | – | 0.001 |
| Length and momentum scales | 0.0002 | – | – | – | – | – | – | – | 0.005 |
| S-P coupling factors | – | – | – | – | 0.01 | 0.01 | – | – | 0.001 |
| Fit bias | – | – | 0.0005 | – | 0.01 | – | 0.001 | – | – |
| Quadratic sum of syst. | 0.0015 | 0.0033 | 0.0036 | 0.0067 | $^{+0.06}_{-0.07}$ | 0.06 | 0.006 | 0.007 | 0.011 |
Mainly two observables:

\[F(|V_{us}|) \]

CKM angle

Penguin pollution

Experimental input. Basically

\[\frac{(BR \cdot f_f)_{J/\psi K^*}}{(BR \cdot f_f)_{J/\psi \phi}} \]

Penguin pollution

\[f = \text{polarization state} \]

Direct CP asymmetry (difference of yields)
Mainly two observables:

\[F(|V_{us}|) \]

CKM angle

Experimental input. Basically (modulo lifetimes)

\begin{align*}
H_c &= \frac{1}{\epsilon} \left| \frac{A_f}{A'_f} \right|^2 \frac{\Gamma[f, t = 0]'}{\Gamma[f, t = 0]} = \frac{1 - 2a'_f \cos \theta'_f \cos \gamma + a^2_f}{1 + 2\epsilon a_f \cos \theta_f \cos \gamma + \epsilon^2 a^2_f} \\
\end{align*}

penguin stuff

\[\left(\frac{BR \cdot f_f}{BR \cdot f_f} \right)_{J/\psi K^*} \]

\[\left(\frac{BR \cdot f_f}{BR \cdot f_f} \right)_{J/\psi \phi} \]

Direct CP asymmetry (difference of yields)

\[\tan \Delta \phi_f = \frac{2\epsilon a_f \cos \theta_f \sin \gamma + \epsilon^2 a^2_f \sin 2 \gamma}{1 + 2\epsilon a_f \cos \theta_f \cos \gamma + \epsilon^2 a^2_f \cos 2 \gamma} \]

SU(3) \implies a' = a, \theta' = \theta

...and plug here
Penguin pollution

Mainly two observables:

$$H_f \equiv \frac{1}{\epsilon} \left| \frac{A_f}{A'_f} \right|^2 \frac{\Gamma[f, t = 0]}{\Gamma[f, t = 0]} = \frac{1 - 2 \alpha'_f \cos \theta'_f \cos \gamma + \alpha'^2_f}{1 + 2 \epsilon \alpha_f \cos \theta_f \cos \gamma + \epsilon^2 \alpha^2_f}$$

This other stuff are SU(3) breaking effects which are currently poorly known

$$\left| \frac{A'_0}{A_0} \right|^2 = 0.42 \pm 0.27,$$

$$\left| \frac{A'_\parallel}{A_\parallel} \right|^2 = 0.70 \pm 0.29,$$

$$\left| \frac{A'_\perp}{A_\perp} \right|^2 = 0.38 \pm 0.16.$$
Mainly two observables:

\[
H_f \equiv \frac{1}{\epsilon} \left| \frac{\mathcal{A}_f}{\mathcal{A}'_f} \right|^2 \frac{\Gamma[f, t = 0]}{\Gamma[f, t = 0]} = \frac{1 - 2a_f' \cos \theta_f' \cos \gamma + a_f'^2}{1 + 2\epsilon a_f' \cos \theta_f' \cos \gamma + \epsilon^2 a_f'^2}
\]

This other stuff are SU(3) breaking effects which are currently poorly known.

Or maybe not so poorly?

\[
\left| \frac{\mathcal{A}'_0}{\mathcal{A}_0} \right|^2 = 0.42 \pm 0.27 ,
\]

\[
\left| \frac{\mathcal{A}'_\parallel}{\mathcal{A}_\parallel} \right|^2 = 0.70 \pm 0.29 ,
\]

\[
\left| \frac{\mathcal{A}'_\perp}{\mathcal{A}_\perp} \right|^2 = 0.38 \pm 0.16 .
\]

arXiv:0810.4248

\[-\sqrt{2}A(B^0 \rightarrow (J/\psi \rho)_{f}) = \lambda A'_f \left[1 - a'_f e^{i\theta'_f} e^{i\gamma} \right] \frac{V_{cd}V_{cb}^*}{|V_{cd}V_{cb}^*|}, \]

where the \(CP \)-conserving hadronic parameters are

\[A'_f \equiv \lambda^2 A \left[A_T^{(c)f} + A_P^{(c)f} - A_P^{(t)f} \right] \]

and

\[a'_f e^{i\theta'_f} \equiv R_b \left[\frac{A_P^{(u)f} - A_P^{(t)f}}{A_T^{(c)f} + A_P^{(c)f} - A_P^{(t)f}} \right]. \]