Top-quark (pair) asymmetry at LHCb

Rhorry Gauld

1

Contents

Introduction and motivations

• Structure of asymmetry prediction

- Top quark asymmetry predictions at LHCb
 - see arXiv 1409.8631

Why study forward qqbar?

$$x_{1,(2)} = \frac{m_T}{\sqrt{\hat{s}}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

Why study forward ttbar?

Why is the LHCb phase space important for an asymmetry measurement?

Acta Phys. Polon. B14 (1983) 413, F. A. Berends, R. Kleiss, S. Jadach, and Z. Was,

Phys. Lett. B195(1987) 74 F. Halzen, P. Hoyer, and C. Kim

Nucl. Phys. B327 (1989) 49 P. Nason, S. Dawson, and R. K. Ellis

arXiv:hep-ph/9802268, arXiv:hep-ph/9807420 J.H.Kuhn, G. Rodrigo.... many more

Rhorry Gauld, Implications Workshop, 15/10/2014

Differentially?

-2

LHC results (R. Hawkings @top 2014)

10

What can LHCb provide?

1) Asymmetric cross section less diluted by symmetric gluon-fusion 2) PDF asymmetry $f_q(x,Q^2) - f_{\bar{q}}(x,Q^2)$ increases at high-x

Proposal of A. Kagan, J. Kamenik, G. Perez, S. Stone 1103.3747

Asymmetry prediction for LHCb - the 1,2,3s

Main contribution - interference of NLO amplitudes!

$$d\sigma_{\text{asym}}^{\text{virt}} = (A(p_t, p_{\overline{t}}) + B(p_t, p_{\overline{t}}) - A(p_{\overline{t}}, p_t) - B(p_{\overline{t}}, p_t))$$

 Include relevant contributions for real+virt. (QCD,QED, weak, ...)
 At LHCb, one must also include top decay in the prediction! (the tops are never fully reconstructed, use lepton direction)
 Apply relevant enclusion suite

3) Apply relevant analysis cuts

Asymmetry prediction for LHCb - the 1,2,3s

Main contribution - interference of NLO amplitudes!

$$\begin{split} A &= \frac{\alpha_s^3 \sigma_a^{s(1)} + \alpha_s^2 \alpha_{e/w} \sigma_a^{e/w(1)} + \alpha_{e/w}^2 \sigma_a^{e/w(0)} + \cdots}{\alpha_s^2 \sigma_s^{s(0)} + \alpha_s^3 \sigma_s^{s(1)} + \cdots} ,\\ &= \alpha_s \frac{\sigma_a^{s(1)}}{\sigma_s^{s(0)}} + \alpha_{e/w} \frac{\sigma_a^{e/w(1)}}{\sigma_s^{s(0)}} + \frac{\alpha_{e/w}^2}{\alpha_s^2} \frac{\sigma_a^{e/w(0)}}{\sigma_s^{s(0)}} + \cdots ,\\ &\sigma_s^{s(0)} &= \underline{\text{symmetric}} \text{ LO cross section (coupling stripped)} \end{split}$$

 $\sigma_a^{x(1)}$ = a<u>symmetric</u> NLO cross section (coupling stripped)

arXiv:hep-ph/9802268, arXiv:hep-ph/9807420, arXiv:1109.6830, J.H.Kuhn, G. Rodrigo arXiv:1107.2606, W. Hollik and D. Pagani, arXiv:1205.6580, W. Bernreuther and Z.-G. Si arXiv:1302.6995, B. Grinstein, C. W. Murphy arXiv:1409.8631, RG

13

Asymmetry prediction for LHCb - the 1,2,3s

Main contribution - interference of NLO amplitudes!

1) Obtain QCD from MCFM, arXiv:1204.1513 J. Campbell, R. K. Ellis

2) Apply rescaling of couplings and colour factors

$$\begin{aligned} R_{q\bar{q}}^{X}(\mu) &= \frac{36Q_{q}^{X}Q_{t}^{X}\alpha_{e}}{5\alpha_{s}}, \quad R_{qg}^{X}(\mu) = \frac{24Q_{q}^{X}Q_{t}^{X}\alpha_{e}}{5\alpha_{s}}\\ Q^{w} &= (2\tau^{3} - 4s_{w}^{2}Q^{e})/4s_{w}c_{w} \end{aligned}$$

3) Its just LO...

Single-lepton asymmetry

$$A^{l} = \int_{2.0}^{4.5} d\eta_{l} \left(\frac{d\sigma^{l^{+}b}/d\eta_{l} - d\sigma^{l^{-}b}/d\eta_{l}}{d\sigma^{l^{+}b}/d\eta_{l} + d\sigma^{l^{-}b}/d\eta_{l}} \right)$$

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

Backgrounds

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

16

Backgrounds

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

Statistical feasibility

$$A^{l} = \int_{2.0}^{4.5} d\eta_{l} \left(\frac{d\sigma^{l^{+}b}/d\eta_{l} - d\sigma^{l^{-}b}/d\eta_{l}}{d\sigma^{l^{+}b}/d\eta_{l} + d\sigma^{l^{-}b}/d\eta_{l}} \right)$$

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

If backgrounds can be controlled!

$$\sigma^{\rm LO} \simeq 4.7 \text{ pb}$$
 $\int \mathcal{L}dt = 50 \text{ fb}^{-1}$

Apply b-tagging efficiency 0.7 Apply lepton efficiency 0.75 $N_{\rm event}$

$$N_{\rm events} \simeq 1.2e_5$$

$$A^l = (1.4 - 2.0) \pm 0.3\%$$

Final Remarks

• Systematics (exp. and theory) are a big task

Top Quark LHC WG - next meeting 12-13th Jan' 2015 <u>https://indico.cern.ch/event/340357/</u>

Important to initiate exp. <-> theory dialogue for tops!

Also, please submit data to the HepData project!

http://hepdata.cedar.ac.uk

Thank you for your attention!

many years year accorden:

Why study forward ttbar?

Why study forward ttbar?

(%)^lhp / ^lAb

	ug	1.79	1.02	0.65	
	dg	0.72	0.45	0.26	
$\mathcal{O}(lpha_s^2 lpha_e)$		9.37	7.65	6.47	
$\approx \mathcal{O}(\alpha_s^2 \alpha_w)$		0.35	0.25	0.19	
$\mathcal{O}(c$	$(x_{e/w}^2)$	0.81	0.78	0.77	
Total		91.80	67.96	52.95	
		D^l (fb), 14 7	ſeV	
PI	OF	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	A^l (%)
NLC) 119	4626	3512	2742	1.95(3)
LC) 119	6225	4663	3586	1.47(1)
LO 130		6761	4961	3752	1.38(3)

Rhorry Gauld, Implications Workshop, 15/10/2014

Di-lepton asymmetry

Di-lepton asymmetry

N_{fb}^{ll}	(fb)	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	
	$u\bar{u}$	0.977	0.709	0.536	
$\mathcal{O}(lpha_s^3)$	$d\bar{d}$	0.344	0.239	0.181	
	ug	0.095	0.070	0.045	
	dg	0.031	0.021	0.013	
$\mathcal{O}(a)$	$\alpha_s^2 \alpha_e$	0.179	0.146	0.120	
$\approx \mathcal{O}(c)$	$\alpha_s^2 \alpha_w)$	0.009	0.007	0.006	
$\mathcal{O}(\mathbf{e})$	$\left(\alpha_{e/w}^2 \right)$	0.006	0.005	0.005	
Tot	tal	1.642	1.198	0.907	
		D_{fb}^{ll} ((fb), 14	TeV	
PDF μ		$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	$\left[A^{ll}_{fb}\right.\left(\% ight)$
NLO	119	110.4	85.0	67.4	1.41 (8)
LO	119	160.7	120.7	93.3	0.99(3)
LO	130	176.6	130.0	98.8	0.92(1)

Rhorry Gauld, Implications Workshop, 15/10/2014

5

Di-lepton asymmetry

At the Tevatron

$$\sigma_{(a)s} = \frac{1}{2} \int_0^1 d\cos\theta \left(\frac{d\sigma^{pp \to t\bar{t}X}}{d\cos\theta} + \frac{d\sigma^{pp \to \bar{t}tX}}{d\cos\theta} \right)$$

$$\sigma_{a}^{s(1)} = \frac{1}{2} \int_{0}^{1} d\cos\theta \left(\left(\mathcal{C}_{\text{left}} \frac{d\sigma_{\text{left}}(p_{3}, p_{4})}{d\cos\theta} + \mathcal{C}_{\text{right}} \frac{d\sigma_{\text{right}}(p_{3}, p_{4})}{d\cos\theta} \right) - \left(\mathcal{C}_{\text{left}} \frac{d\sigma_{\text{left}}(p_{4}, p_{3})}{d\cos\theta} + \mathcal{C}_{\text{right}} \frac{d\sigma_{\text{right}}(p_{4}, p_{3})}{d\cos\theta} \right) \right)$$

Single-lepton

- generate samples (POWHEG) and match to parton shower (Pythia8176)
- apply <u>realistic</u> cuts: I pT > 20 GeV and b pT > 60 GeV
- apply b-tagging efficiencies: 70% efficiency and 1% mis-tag (non b-jet)
- apply muon efficiencies: 75% (trigger, identification, reconstruction)

Single-lepton 14 TeV (lbj)

 $\begin{array}{c} 14 \ TeV \\ l^{\pm}bj \end{array}$

Theoretical systematics for ttbar at LHCb

$$\frac{d\sigma^{\tilde{t}}}{dX} = \frac{1}{2} \left(\frac{d\sigma^{t}}{dX} + \frac{d\sigma^{\bar{t}}}{dX} \right)$$

Production mechanism ratio:

LHCb

$$\frac{q\bar{q} + |qg|}{total}$$

LHCb probes unique region

Order	PDF	$\sigma(\mathrm{pb})$	$\delta_{\rm scale} ({\rm pb})$	$\delta_{ m PDF} \ (m pb)$	δ_{α_s} (pb)	δ_{m_t} (pb)	$\delta_{ m total} \ (m pb)$
$NNLO^{*}(inc.)$		832.0	$ \begin{array}{c} +18.7 & (+2.2\%) \\ -27.4 & (-3.3\%) \end{array} $	$^{+25.1(+3.0\%)}_{-25.1(-3.0\%)}$	$+0.0(+0.0\%)\ -0.0(-0.0\%)$	$+34.9(+4.2\%)\ -33.7(-4.1\%)$	$+61.7 (+7.4\%) \\ -69.7 (-8.4\%)$
NLO(inc.)	ABM	771.9	$^{+91.0(+11.8\%)}_{-92.4(-12.0\%)}$	$^{+9.4(+1.2\%)}_{-9.4(-1.2\%)}$	$^{+0.0(+0.0\%)}_{-0.0(-0.0\%)}$	$+32.3(+4.2\%) \\ -31.9(-4.1\%)$	$^{+124.7(+16.1\%)}_{-125.7(-16.3\%)}$
NLO(LHCb)		117.2	$^{+14.5(+12.3\%)}_{-14.1(-12.0\%)}$	$+2.0(+1.7\%) \\ -2.0(-1.7\%)$	$+0.0(+0.0\%)\ -0.0(-0.0\%)$	$^{+5.2(+4.4\%)}_{-5.1(-4.3\%)}$	$+20.0(+17.1\%)\ -19.5(-16.7\%)$
$NNLO^{*}(inc.)$		952.8	$\begin{array}{c} +23.3 & (+2.4\%) \\ -34.5 & (-3.6\%) \end{array}$	$^{+22.4(+2.3\%)}_{-19.9(-2.1\%)}$	$^{+14.0(+1.5\%)}_{-14.0(-1.5\%)}$	$+39.2(+4.1\%)\ -37.8(-4.0\%)$	$+70.6 (+7.4\%) \\ -79.5 (-8.3\%)$
NLO(inc.)	CT10	832.6	$^{+97.0(+11.7\%)}_{-96.7(-11.6\%)}$	$^{+19.6(+2.4\%)}_{-20.2(-2.4\%)}$	$+9.2(+1.1\%) \\ -9.2(-1.1\%)$	$+34.0(+4.1\%)\ -33.3(-4.0\%)$	$+137.4(+16.5\%)\ -136.6(-16.4\%)$
NLO(LHCb)		137.0	$^{+16.7(+12.2\%)}_{-16.4(-12.0\%)}$	$+5.0(+3.6\%)\ -4.6(-3.4\%)$	$+1.8(+1.3\%)\ -1.8(-1.3\%)$	+5.9(+4.3%) -5.8(-4.2%)	$^{+24.7(+18.0\%)}_{-24.0(-17.5\%)}$
$NNLO^{*}(inc.)$		970.5	$^{+22.1}_{-22.0} \ \stackrel{(+2.3\%)}{_{(-2.3\%)}}$	$^{+15.7(+1.6\%)}_{-25.7(-2.6\%)}$	$+12.8(+1.3\%)\ -12.8(-1.3\%)$	$+39.6(+4.1\%)\ -38.4(-4.0\%)$	$+66.6 (+6.9\%) \\ -70.0 (-7.2\%)$
NLO(inc.)	HERA	804.2	$^{+91.9(+11.4\%)}_{-87.6(-10.9\%)}$	$^{+16.1(+2.0\%)}_{-21.9(-2.7\%)}$	$+5.3(+0.7\%)\ -5.3(-0.7\%)$	$+33.4(+4.1\%)\ -32.4(-4.0\%)$	$+129.3(+16.1\%)\ -127.1(-15.8\%)$
NLO(LHCb)		124.7	$^{+14.8(+11.8\%)}_{-13.7(-11.0\%)}$	$+3.0(+2.4\%)\ -3.0(-2.4\%)$	$+1.1(+0.9\%) \\ -1.1(-0.9\%)$	+5.5(+4.4%) -5.3(-4.3%)	$+21.1(+16.9\%)\ -19.9(-15.9\%)$
$NNLO^{*}(inc.)$		953.6	$+22.7 (+2.4\%) \\ -33.9 (-3.6\%)$	$^{+16.2(+1.7\%)}_{-17.8(-1.9\%)}$	$^{+12.8(+1.3\%)}_{-12.8(-1.3\%)}$	$+39.1(+4.1\%)\ -37.9(-4.0\%)$	$+66.9 (+7.0\%) \\ -77.7 (-8.1\%)$
NLO(inc.)	MSTW	885.6	$^{+107.2(+12.1\%)}_{-105.7(-11.9\%)}$	$^{+16.0(+1.8\%)}_{-19.4(-2.2\%)}$	$^{+10.1(+1.1\%)}_{-10.1(-1.1\%)}$	$+36.2(+4.1\%)\ -35.3(-4.0\%)$	$+148.1(+16.7\%)\ -147.3(-16.6\%)$
NLO(LHCb)		144.4	$^{+18.6(+12.8\%)}_{-17.8(-12.3\%)}$	$+3.5(+2.4\%)\ -3.9(-2.7\%)$	$+1.9(+1.3\%)\ -1.9(-1.3\%)$	$^{+6.2(+4.3\%)}_{-6.1(-4.2\%)}$	$+25.9(+18.0\%)\ -25.2(-17.5\%)$
$NNLO^{*}(inc.)$		977.5	$\begin{array}{r} +23.6 & (+2.4\%) \\ -35.4 & (-3.6\%) \end{array}$	$^{+16.4(+1.7\%)}_{-16.4(-1.7\%)}$	$^{+12.2(+1.3\%)}_{-12.2(-1.3\%)}$	$^{+40.4(+4.1\%)}_{-39.1(-4.0\%)}$	$+68.9 (+7.0\%) \\ -80.0 (-8.1\%)$
NLO(inc.)	NNPDF	894.5	$^{+107.6}_{-101.0} (+12.0\%)$ $^{-101.0}_{-11.3\%}$	$^{+12.8(+1.4\%)}_{-12.8(-1.4\%)}$	$+9.9(+1.1\%)\ -9.9(-1.1\%)$	$+36.6(+4.1\%)\ -35.8(-4.0\%)$	$+147.6\ (+16.5\%)\ -140.3\ (-15.7\%)$
NLO(LHCb)		142.5	$+18.1(+12.7\%)\ -16.6(-11.7\%)$	$+3.0(+2.1\%)\ -3.0(-2.1\%)$	+2.0(+1.4%) -2.0(-1.4%)	$^{+6.2(+4.4\%)}_{-6.1(-4.3\%)}$	$^{+25.2(+17.7\%)}_{-23.7(-16.6\%)}$

Summary of theory systematics (NLO) MCFM, $\sqrt{s} = 14 \text{ TeV}$ 180 ABM11 CT10w 160 HERA1.5 $\sigma^{\rm LHCb}(\rm pb)$ MSTW08 140 NNPDF2.3 $\delta_{\text{total}} = \delta_{\text{scale}} + (\delta_{\text{PDF}}^2 + \delta_{\alpha_s}^2 + \delta_{m_t}^2)^{\frac{1}{2}}$ 120 100 0.118 0.116 0.117 0.119 0.120 0.121 $\alpha_s(M_Z)$

			PDF	$\delta_{ m scale}^{ m ratio}$	$\delta_{ m PDF}^{ m ratio}$	$\delta^{ m ratio}_{lpha_s}$	$\delta_{m_t}^{\mathrm{ratio}}$	$\delta_{ m total}^{ m ratio}$
$\delta_X^{ m ratio} =$			ABM	$^{+1.05}_{-1.00}$	$^{+1.40}_{-1.40}$	$^{+0.00}_{-0.00}$	$+1.05 \\ -1.05$	$^{+1.06}_{-1.02}$
	$\delta_X^{ m LHCb}$		CT10	$^{+1.05}_{-1.03}$	$^{+1.55}_{-1.40}$	$^{+1.20}_{-1.20}$	$^{+1.06}_{-1.05}$	$^{+1.09}_{-1.07}$
	$\frac{11}{\delta NLO}$	1	HERA	$^{+1.04}_{-1.01}$	$^{+1.19}_{-0.90}$	$+1.33 \\ -1.33$	$^{+1.07}_{-1.06}$	$^{+1.05}_{-1.01}$
	^{O}X		MSTW	$^{+1.06}_{-1.03}$	$^{+1.35}_{-1.23}$	$+1.13 \\ -1.13$	$^{+1.05}_{-1.06}$	$^{+1.07}_{-1.05}$
			NNPDF	$^{+1.05}_{-1.03}$	$^{+1.45}_{-1.45}$	$+1.27 \\ -1.27$	$^{+1.07}_{-1.07}$	$^{+1.07}_{-1.06}$

Summary of eigenvector sensitivity

35

Effect of LHCb analysis cuts

Effect of LHCb analysis cuts

A few more comments

Rhorry Gauld, Implications Workshop, 15/10/2014

LHC 8TeV Asym Systematics

CMS-PAS-TOP 12 033 8TeV

Systematic uncertainty	shift in inclusive A_C	range of shifts in differential A_C		
JES	0.001	0.001 - 0.005		
JER	0.001	0.001 - 0.005		
Pileup	0.001	0.000 - 0.003		
b tagging	0.000	0.001 - 0.003		
Lepton ID/sel. efficiency	0.002	0.001 - 0.003		
Generator	0.003	0.001 - 0.015		
Hadronization	0.000	0.000 - 0.016		
$p_{\rm T}$ weighting	0.001	0.000 - 0.003		
Q^2 scale	0.003	0.000 - 0.009		
W+jets	0.002	0.001 - 0.007		
Multijet	0.001	0.002 - 0.009		
PDF	0.001	0.001 - 0.003		
Unfolding	0.002	0.001 - 0.004		
Total	0.006	0.007 - 0.022		