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Review of exclusive J/ production
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* Introduction: basics, GPDs, k; factorisation

* Ultraperipheral J/y production in pp

* Gluon fits using HERA and LHC data; predictions
e Use in global fits? NLO in collinear factorisation
 Qutlook
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Basics of Exclusive production of Vector Mesons

need colour singlet exchange
(modelled by 2g, Ryskin 1993)

» factorisation of basic yp
amplitude:

ZE & ch‘:—l—p & quJE/ID

* cross section ~ g(x,?)?

* perturbative QCD descriptionif ¢ heavy VMs described in non-
scale>>Aq, (electroproduction, relativistic approximation
heavy quarks, or large p,)



‘normal’, forward PDF ‘'skewed’, generalised GPD: P#P’
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 forward limit: €=0 * not well known, models
e studied in DVCS

H,(x,0,0) = q(x) x>0
H,(x,0,0) = -gbar(-x)  x<0 e can be related, for small x, €,
H,(x,0,0) = xg(x) to forward PDFs by

Shuvaev transform



Basics: k; factorisation

* in standard collinear factorisation, k;
is only generated from higher orders

* can be bad approximation especially
at high energy scattering with large
logs, e.g. In(s/m?)

* caninclude k; by using unintegrated
PDFs (Collins et al. 1991)

e perform loop integral over k;
* general k; factorisation formula with numerically with uPDFs, captures

off-shell ME sigma-hat: leading contributions beyond LO
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NRQCD approximation
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lowest order non-relativistic approximation sets m =M, /2
and neglects all binding and higher order in v (and a,) effects

large suppression effects from Fermi motion were obtained by
some authors using potential models for the J/{ wave function

Hoodbhoy has calculated leading relativistic corrections
including higher (qgbar+g) Fock states required for gauge
invariance and found only a 6% reduction for the x-section

for results below experimentally measured I'_,_.**° of J/{ used



Ultraperipheral J/y production: TH description

* use of Equivalent Photon Approximation to relate pp to yp cross-section

* ultraperipheral cross-section at given rapidity y has contributions from two yp

c.m. energies: Wi - Mj/w\/gexp(:HyD
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do(pp
. % ~ S¥Nioy(vp) + SZN_o_(p)

with photon fluxes N, (from EPA) and gap survival factors S, (from KMR model)

e same/similar description applicable for ultraperipheral pA collisions
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* soft QCD interactions with spectators can destroy the rapidity gaps/exclusivity

* have to account for gap survival factors S

e studied in detail for excl. H and other processes (Durham model, Khoze et al.)

* here use of KMR model: convolution (in impact parameter space) of process
dependent matrix elements times exponential suppression with universal
proton opacities

 model uses many pp and ppbar x-section data in fit procedure based on
eikonal model and effective pomeron exchanges

* small corrections from “enhanced’ rescattering; uncertainty from S,%: ~5%
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HERA data fitted with LLA (LO, model 1) and unintegrated (‘NLO’, model 2) gluon
forms, via non-linear x> minimisation; xin range 10*.
LLA: power law
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. 102, u2=2.4 ... 8 Ge\?

with A =a + bIn(p?/0.45GeV?)

NLO: effective evolution and leading double log resummation, IR parameter Q,?

zg(x, u?)

nae= (p
with G =

?)exp[y/16N./Bo In(1/z) In(G)]
In(p 2/AQCD>/1H(Q0/AQCD)



Cross section and gluon fits: including LHCb data
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* LHCb data extend range down to x ~ 10, but HERA data (still) dominant

* both underlying cross sections o, (W,) calculated with S,? and N, factors

* both fits with good 2 .. /d.o.f. < 1 (for details see publications)
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can use fitted gluon (from HERA & LHCb 2013 data) for do(pp)/dy predictions
at higher pp energies; LO and 'NLO’ similar/consistent at 7 TeV

W_component accounts for O(30-40%) of do(pp)/dy;
better use other data (fixed target) there to minimise TH uncertainties?

so far everything consistent; more fit constraints expected with future data
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LHCb 2014 data (at 7 TeV), not
included in fit, have ~ half the error

consistent with HERA power law
and both our LO and "NLO’ fits

fits also used for exclusive (2S) =
and Y predictions (no pp Y data yet,
HERA data described, not fitted)
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NLO gluon fit compared to global fits
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« global fits (w/out J/{ data) nearly unconstrained at low x and rel. low scales

* inour fit:
- scale dependence (evol.) from electroproduction data and from k;? integral
- stable behaviour as expected from ansatz
- errors displayed from data only; need to further scrutinise TH uncertainties



Exclusive (J/J) data and global fits, NLO in coll. fact.

global fits (so far) don’t use these exclusive data;
- (unintegrated) GPDs not on the same footing; is this a problem?
- TH uncertainties not straightforward; also not in standard approach
- obvious tension at low x

with more data in the future need to overcome obstacles!

other possible route: standard collinear factorisation at NLO:
- results from Ivanov et al. in principle available since 2004,
- but results show huge scale (renormalisation and factorisation)
dependence when taken face value (need to sum large logs)

independent calculation of Ivanov et al.’s results just finished (Stephen Jones);
- use of standard loop-calculation tools
(not based on cutting rules/dispersion relations)
- semi-automated (so can be extended to similar processes) =»
- publication and phenomenological analysis in preparation



Stephen Jones

Introduction J /4 Production (LO) Small-z Gluon GDVCS & J /4 Production (NLO) Conclusion

Calculation Overview

® Dimensional regularisation d = 4 — 2¢
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Outlook

* perturbative QCD framework with two gluon exchange is successfully
describing many exclusive processes

* with improved experimental data for J/{ in a wide x range the gluon can be
constrained much better than is currently done in the global fits

e further developments and refinements are under way, including a
complementary analysis based on a full NLO calculation within collinear

factorisation

* more data in an even wider x range will add further crucial constraints on the
form of the gluon

* data at higher scales (Y photo- or J/{ electroproduction data) would be
extremely valuable to better scrutinise the PDF scale evolution in the fits

e ultimately a combined global fit should be performed.



