Exclusive Production at LHCb LHCb Implications Workshop

Dan Johnson

CERN

 $15^{\rm th}$ October 2014

D. Johnson (CERN)

Exclusive Production at LHCb

15-10-2014 1 / 17

- Central Exclusive Production (CEP) at LHCb
- 2 Results from run 1
- Prospects for run 1 data
- Extending LHCb's rapidity coverage for next year

CEP at LHC

Interactions of the form $pp \rightarrow pEp$

exchange

QED background: 2γ exchange

• QED process with small proton form-factor corrections

Pomeron exchange:

- Pomeron is, at leading order, a pair of gluons in ++ state
- Photoproduction: Photon-pomeron fusion
 - Probes gluon density at small values of proton's momentum fraction, x
 - Perturbative calculations accessible for higher mass of E
- Double pomeron exchange: Pomeron-pomeron fusion
 - *E* must be neutral PC = ++, no net flavour: $f_{0,2}, \chi_{c,b}, \gamma\gamma, JJ, H$
 - Low M(E): spectroscopy studies. High M(E): QCD and the pomeron

CEP at LHCb

Experimental signature:

• 'Exclusive' candidate (e.g. $J/\psi \rightarrow \mu^+\mu^-$) large rapidity gaps with respect to beam

At LHCb:

- Low pile-up
- ${\small \bullet}~$ Detection in pseudorapidity range $2 \rightarrow 5$
- Fully reconstruct and identify tracks from exclusive candidate
- Require no other detector activity
 - Implicitly require only one pp interaction
 - Run 1 effective $\mathcal{L}_{\mathrm{int}}$: ~600 pb⁻¹

Establishing the rapidity gap

- Require no other tracks reconstructed
- Require no γ or π^0 activity in calorimeter
- Even beyond LHCb acceptance: exclusive candidate p_T^2 distribution
 - Regge theory implies exclusive candidate $\frac{d\sigma}{dt} \approx \exp(b_s t)$, where $t \approx -p_T^2 c^2$
 - Proton-dissociative background: similar exponential but with harder p_T^2

- Central Exclusive Production (CEP) at LHCb
- Results from run 1
- Prospects for run 1 data
- Extending LHCb's rapidity coverage for next year

1) Exclusive J/ψ and $\psi(2S)$ production

Measurement: differential production cross-section (J Phys G41 055002)

 $pp \rightarrow p(J/\psi \text{ or } \psi(2S) \rightarrow \mu^+\mu^-)p$

Motivation

- Exchange of a photon and pomeron
- Calculable using pQCD, depends on gluon PDFs
- In LHCb rapidity range, probe x down to 5×10^{-6}
- Sensitive to saturation effects
- Sensitive to odd-parity pomeron partner, 'odderon' (replacing photon)

'Empty-detector' signal and estimate of exclusivity

1) Exclusive J/ψ and $\psi(2S)$ production

Interpretation

- LO and NLO extrapolations from HERA data have been performed ¹
- J/ψ (left) and $\psi(2S)$ (right) data are superimposed: good agreement with NLO

¹JHEP 1311 (2013) 08

D. Johnson (CERN)

15-10-2014 7 / 17

2) Double charmonium production

Measurement: production cross-section (J Phys G41 115002)

pp
ightarrow p(X)p, $X = \{J/\psi J/\psi, J/\psi \psi(2S), \psi(2S)\psi(2S), \chi_{ci}\chi_{ci}\}$

Motivation

- Exchange of two pomerons
- Cross-section and mass spectrum sensitive to exotics: e.g. glueballs or tetraquarks
- Relate cross section to calculated $\sigma(gg
 ightarrow J/\psi J/\psi)$ using Durham model

'Empty-detector' signal

2) Double charmonium production

Interpretation

- First observation of CEP for pairs of charmonium mesons
- $\bullet~$ Estimate of exclusive component in 'empty-detector' signal is 42 $\pm~13\%$
- Measurement of $\sigma(J/\psi J/\psi) = 24 \pm 9pb$ and $\frac{\sigma(J/\psi \psi(25))}{\sigma(J/\psi J/\psi)} = 1.1^{+0.5}_{-0.4}$ in reasonably good agreement with subsequent theoretical calculation²
- Observed J/ψJ/ψ mass spectrum in good agreement with shape (independent of renormalisation/factorisation scales) from MSTW08LO (cf inclusive J/ψJ/ψ mass spectrum³).

²arXiv:1409.4785 ³PLB 707 52

D. Johnson (CERN)

15-10-2014 9 / 17

- Central Exclusive Production (CEP) at LHCb
- 2 Results from run 1
- Prospects for run 1 data
- Extending LHCb's rapidity coverage for next year

Ongoing analyses

Young field in LHCb, but maturing rapidly

Photoproduction

• Gluon PDF: natural to

extend dimuon mass range

- (e.g. $\Upsilon(1S, 2S, 3S)$) where:
 - Heavier central system ⇒ pQCD
 - Probe very low x

Predictions exist for the Υ CEP differential cross section:

Ongoing analyses

Pomeron pomeron fusion

- Di-meson production(e.g. ππ, KK, DD̄?)
- Heavy quark systems
 (χ_c, χ_b, ...)
 - Decaying to $\mu^+\mu^-\gamma$
 - Expect separation of *χ*_{c0,1,2} states using converted photons

Spectroscopy studies: X(3872)

- LHCb observed 1⁺⁺ inclusively
- Can it be seen exclusively?

- Central Exclusive Production (CEP) at LHCb
- 2 Results from run 1
- Prospects for run 1 data
- Extending LHCb's rapidity coverage for next year

Concept

- Biggest challenge currently is to establish the rapidity gap
- High proportion (50% for JψJψ CEP) of 'empty-detector' signal where proton dissociation escapes down the beampipe
- LHCb hopes for $\sim 5 f b^{-1}$ during run II at low pile-up

Install scintillators either side of LHCb

• Veto showers from high rapidity particles interacting with the beam-pipe elements

Exclusive Production at LHCb

15-10-2014 14 / 17

Simulated energy densities in first scintillator station

- Each station must be sensitive to \sim 100 hits to effectively veto single diffractive events, while tolerating \sim 2500 hits/event in minimum bias operating conditions
- Efficiency is good even for low energy particles, beyond geometric acceptance due to showering

Installation and commissioning status

- Four of five stations installed and cabled
- Commissioning tests underway
- Read-out chain maturing

Exciting opportunities for CEP studies at LHCb

- LHCb's forward acceptance provides unique window on CEP
- Spectroscopy in a very clean environment
- QCD studies
 - very low-x gluon PDF
 - increased \sqrt{s} allows probing of even lower x (CEP $J/\psi \rightarrow x = 2 \times 10^{-6})$
 - nature of pomeron
 - sensitivity to glueballs, odderons, tetraquarks
- Run 1:
 - published analyses: $J\psi/\psi(2S)$ and double-charmonium CEP
 - many more analyses anticipated
- Introduction of FSCs for 2015 will greatly enhance LHCb's CEP programme