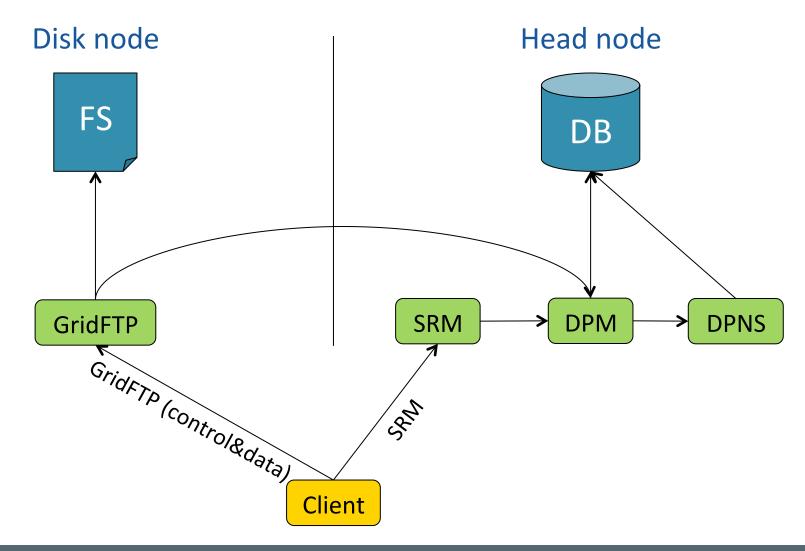


GridFTP 2 - the road to redirection

Andrey Kiryanov DPM Workshop, Naples

9/10/2014



GridFTP in DPM

- Globus GridFTP server supports pluggable backend modules: DSIs (Data Storage Interfaces)
 - No need to implement a full FTP server from scratch
 - Some things you cannot control
- DPM interaction is implemented with a DSI
- Clients have to contact disk nodes directly. For LFNs an advance SRM call is necessary to get a TURL.
- If a file is not available locally, RFIO is used for transparent staging (slow)

GridFTP in DPM

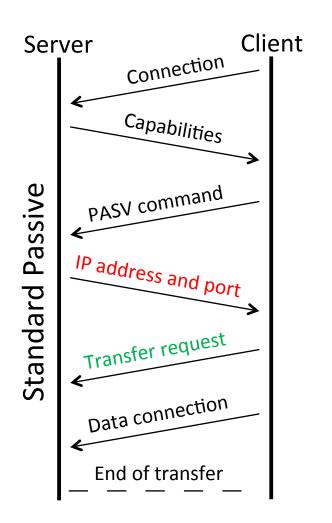
Weaknesses of the old stack

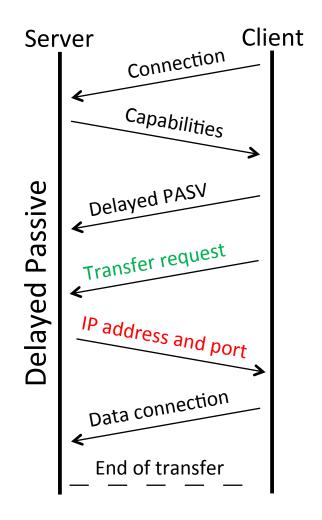
- A client needs SRM for LFN to TURL conversion, which is a time killer for normal file access
- Direct GridFTP connection to a head node is possible, but results in inefficient internal transfers (data is staged from disk node via RFIO)
- SRM is not interesting outside of HEP community
 - Other protocols like http/webdav and xroot have fancy built-in redirection capabilities that render SRM namespace conversion unnecessary

Can we improve it?

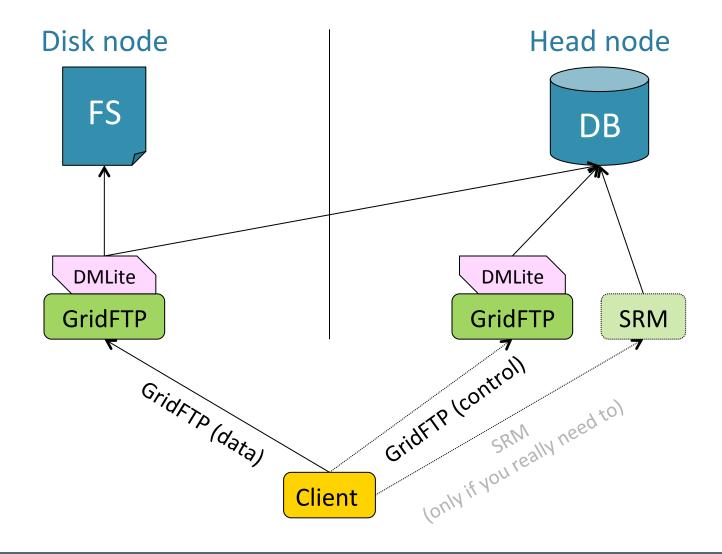
Globus GridFTP server natively supports clusterization and has three modes of operation:

- Standalone used everywhere so far
- Frontend node accepts control connections, IPC with backend nodes
- Backend node accepts or initiates data connections, IPC with frontend node, no control connections




Useful (Grid)FTP basics

- GridFTP is not much different from good old FTP, but it has GSI auth. on control channel and a bunch of extensions
- A separate TCP connection(s) is used for data transfer,
 endpoint parameters are negotiated via control channel
- Two standard FTP data connection modes: Passive (initiated by client) and Active (initiated by server)
- GridFTP 2 adds a third data connection mode: Delayed Passive



What exactly is Delayed in Passive mode?

GridFTP in DMLite

Current deployment scenario

- That's what we have in production now
- Proper configuration of DMLite is essential
- Almost no visible changes
- Old DPM DSI is replaced with new DMLite DSI
 - A couple of bugs were immediately found and fixed
- Clients still need to contact SRM prior to disk nodes
- If you also use your head node as a disk node, it's the right time to stop doing it

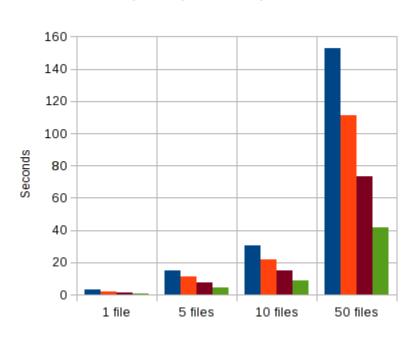
Future deployment scenario

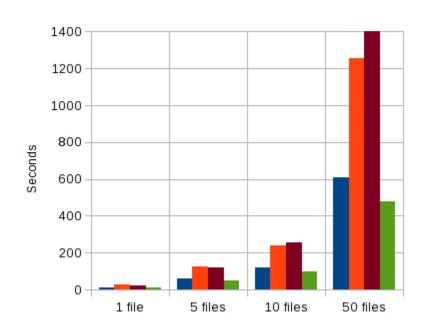
- Will be supported with Puppet, meanwhile a manual configuration is necessary
- Head node cannot be used as storage
- Clients always contact the head node, direct control connections to disk nodes are no longer supported
- Clients do not need to contact SRM, but if they do, a proper TURL with a head node is given
- Clients need to support Delayed Passive mode for optimal performance
 - Older clients will end up on a random disk node, a file transfer will be done with transparent RFIO staging (slow)

Configuration reference

- Disk nodes: add data_node 1 option to /etc/gridftp.conf and restart GridFTP
 - Don't be surprised that you won't be able to directly access these nodes with GridFTP clients anymore
- FTP head node: add remote_nodes <list> option to /etc/ gridftp.conf and restart GridFTP
 - list> is a comma-separated list of disk node FQDNs with ports (e.g. disk1.domain.org:2811,disk2.domain.org:2811)
- SRM head node: add DPM FTPHEAD <head> option to /etc/ shift.conf and restart SRM
 - <head> is FQDN of FTP head node from the item above

Is the juice worth the squeeze?


- Check RFIO logs on your disk nodes. If there are much more transfers than it was before then you have lots of clients that do not support Delayed Passive mode.
 - Fall-back transfers will happen between the disk nodes. Head node will not be involved.
 - You can easily turn redirection off by undoing changes from the slide above
- For small-file workloads (up to tens of megabytes per file) avoiding SRM might be profitable even if it causes RFIO fallback
- For large-file workloads (hundreds of megabytes per file or more) you should avoid RFIO at all costs


Performance study

Sequential transfer of files

Small file (40MB) transfer performance

Large file (1GB) transfer performance

- SRM + GridFTP (lcg-cp -b)
- GridFTP + int. RFIO (lcg-cp -b)
- GridFTP + int. RFIO (globus-url-copy -dp)
- GridFTP redir. (globus-url-copy -dp)

Current status

- FTS3 and other GFAL2-based tools support Delayed Passive mode with zero configuration. For globus-url-copy you should add -dp command-line argument, which will turn on auto-detection of Delayed Passive mode and will not break connection with other GridFTP servers.
 - For third-party transfers <u>the initiator</u> (FTS3) has to support <u>Delayed</u>
 Passive, not the other endpoint
- Clients that rely on Globus libraries can easily be modified to support Delayed Passive mode:
 - Use the globus_ftp_client_operationattr_set_delayed_pasv(), Luke!
- Please migrate your scripts from lcg-util to gfal2-util
- https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/GridFTP

Experiment readiness

- Unmodified experiment workflows will continue to work
- GridFTP-only transfers will show a large performance increase wrt current SRM model
- Older, unmodified clients (e.g. lcg-util) will get a performance degradation
 - lcg-util is officially obsolete and experiments have all agreed to adopt newer clients which support delayed passive (gfal2-util)
- Experiments which use space tokens will still have to pass through SRM otherwise ST usage accounting will break
- Redirection currently most interesting to sites who give substantial storage to "non-spacetoken" VOs
- We invite a couple of pioneer sites to activate redirection and work with the dev team to monitor the impact. We will provide a recipe for how to detect problems and how to revert quickly to the current configuration.

That's all

Thank you!

