
AliROOT benchmarking and QA
Mikołaj Krzewicki, FIAS

25-06-14 M.Krzewicki 2

testing the entire chain
● all of the following is based on expert experience with

developing/debugging/running/..., discussions with other detectors, offline, etc...
● people involved/contributing: Jan Wagner, Marian, MK. (core), plus many more

provide valuable contributions: Michael Knichel, Jakob Blomer, Predrag,
Dario,...

● need to stress the entire chain to test all components
● full cpass0/cpass1/QA scheme on reference data

– reconstruction

– calibration

– analysis and QA frameworks

– software performance: syswatch, valgrind, logs, ...

– physics performance: standard+expert QA

● Keep it independent of the grid to keep everything consistent
● test an internally consistent release:

– benchmark + all helper scripts part of release

25-06-14 M.Krzewicki 3

benchmark procedure
● Input data: raw filtered data (enhanced high pt, V0, cosm ics,...)

– LHC10e + LHC11h (~100 runs,2k files) – smaller selection to be
made by detector experts for running on a smaller system (~200 files)

– On the grid: alien:///alice/reference

– Copied to EOS public for direct access from the nodes

– If directory structure is “standard”, i.e.
(.../2010/LHC10e/000137234/...) full automation (run number, year
extracted from path), otherwise each run has to be handled manually.

● OCDB (cvmfs)
● Software (cvmfs)
● Storage space for the output (/eos)

25-06-14 M.Krzewicki 4

cpass0

merge+CDB

cpass0

benchmark, schematic

cpass1 cpass1

merge + CDB
merge QA

chunk1chunk0

standard + expert
QA plots

OCDB

log summary
(from validation)

expert QA
(filtered trees)

stacktrace summary

cpass0
valgrind

merged syslogs

output file lists
(ESD,QA,filtered)

summary trees

25-06-14 M.Krzewicki 5

Output: QA
● Standard QA plots by central script as used for the QA website

(e.g. for TPC http://aliqatpc.web.cern.ch/)
● Output the same as for production – a directory structure with

plots and html files
– easy to publish, check and compare

● Expert QA: filtered trees
– Plot generation also handled by the standard QA script

25-06-14 M.Krzewicki 6

Output: summary trees (expert)
● combine various outputs/status into one tree
● extremely useful for understanding performance/problems
● in the tree (right now):

– Cpass0 status variables

– Cpass1 status variables

– TPC QA trending variables

– TPC calibration Cpass0 variables

– TPC calibration CPass1 variables

● Visualization can be easily implemented.

25-06-14 M.Krzewicki 7

backup

25-06-14 M.Krzewicki 8

How it works
● Bash script: $ALICE_ROOT/PWGPP/benchmark/benchmark.sh +
config example:
$ALICE_ROOT/PWGPP/benchmark/benchmark.config

● Works on batch systems (LSF,SGE) – as used at GSI
● Also: using makefow for job distribution and dependencies

(http://ccl.cse.nd.edu/software/makeflow/)
– Make-like confguration (target: sources)
– some limitations (from out point of view):
– hard fow dependencies – if one job fails entire fow stops
– we catch it: from makefow perspective all fnishes
– job wrappers (almost) always exit normally
– decision whether or not to run the actual cpu intensive

task based on input (cpass1 wrappers always run, actual
cpass1 only runs when cpass0 produced calib, etc...)

25-06-14 M.Krzewicki 9

how it works (contd)
● configuration contained in a config file
● many options, flexible
● config file options can be overridden on the command line

– e.g. fixed config file for routine testing, override the aliroot env script on the
command line.

● easily override most steering scripts by default taken from your
aliroot (e.g. merge.C, rec.C, etc.)

● new feature: MC using the benchmark script.
– recently implemented by Jan, reported to be working, might still need some

development.

25-06-14 M.Krzewicki 10

simple HOWTO

./benchmark.sh run test1 benchmark.list benchmark.config ocdbStorage=”raw://”

List of input files

arbitrary
production ID

config file

vi benchmark.config

edit config

override config options
command

25-06-14 M.Krzewicki 11

QA tool requirements
● bash version >= 4.0
● all logic: scripts, macros taken from $ALICE_ROOT + standard linux utils
● input files follow path convention: prefix/dataType/year/LHCperiod/pass/ (e.g.

/prefix/sim/2013/LHC13b/pass1/)
● one input file per run (as in the standard QA schema)
● to participate: provide a script for plot creation/trending!
● detector scripts have to be named according to a convention as the detector name

is derived from the script name
● for central running a fixed output directory structure was created, constraints on

the naming for scripts:
● {ITS,TPC,TRD,TOF,HMP,PHO,EMC,V0, T0,FMD,PMD,MU,ZDC,PID,

TRK,EVS,CAL}.sh

25-06-14 M.Krzewicki 12

QA tool, input&output
● the tool: $ALICE_ROOT/PWGPP/QA/scripts/runQA.sh
● detector scripts: $ALICE_ROOT/PWGPP/QA/detectorScripts/DET.sh
(TPC.sh, TOF.sh, TRK.sh, T0.sh, etc...)

● default input: file list of standard Qaresults.root (in fact by default
a path to /.../root_archive.zip#QAresults.root)

● output: directory structure per detector with output per
run/production
– per run the detectors produce plots + a trending file (trending.root with a

tree called “trending” inside) + custom information(logs)

– default trending.root is provided if detector does not produce it
($ALICE_ROOT/PWGPP/macros/simpleTrending.C, basic stats for all
histograms in Qaresults.root for given detector)

– per production (period/pass) detector produces trending plots / period
wide QA (merged trending.root is provided by system)

25-06-14 M.Krzewicki 13

QA tool, input&output
● safe updates (final location only updated after log validation)
● log validation:stdout of detector scripts + any *.log files

validated – in case of trouble automatic notification of QA
responsible + temporary output still available

● automatic summary.log (per detector)
● period level QA is rerun if a run is updated

25-06-14 M.Krzewicki 14

QA tool requirements for detector scripts
● detector scripts define 2 functions (see template

$ALICE_ROOT/PWGPP/QA/detectorScripts/EXAMPLE.sh)
– runLevelQA, input here is the qa file (Qaresults.root), path provided

externally, together with some other variables, like the run number

– periodLevelQA – merged trending.root file provided by framework
and present in the running dir

● run in the current directory, it will be created for you, leave all
output there

25-06-14 M.Krzewicki 15

detector QA script example
● simple edit of the example:

PWGPP/QA/detectorQAscripts/EXAMPLE.sh.template
● T0.sh: #available variables:

$dataType e.g. data or sim
$year e.g. 2011
$period e.g. LHC13g
$runNumber e.g. 169123
$pass e.g. cpass1,pass1,passMC

runLevelQA()
{
 qaFile=$1

 cp $ALICE_ROOT/T0/MakeTrendT0.C .
 aliroot -b -q -l "MakeTrendT0.C(\"$qaFile\",${runNumber})"
}

periodLevelQA()
{
 trendingFile=$1

 cp $ALICE_ROOT/T0/drawPerformanceT0QATrends.C .
 aliroot -b -q -l "drawPerformanceT0QATrends.C(\"$trendingFile\")"
}

25-06-14 M.Krzewicki 16

QAtool, local/expert use
● in principle all configurable options go to a config file, but

defaults are sane and options can be provided (or overridden) via
command line. (run the scripts wihtout args to see some basic
docs)

● ./runQA.sh inputList=qa.list

● ./runQA.sh inputList=TPCfiles.list includeDetectors=TPC
● ./runQA.sh inputList=TOFfiles.list includeDetectors=TOF
● ./runQA.sh configFile=/path/to/config.file

● output is then in the current directory, one dir per detector

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

