

Simulation studies of trapezoidal GEM for CMS muon high eta upgrade

Yasser Maghrbi and Othmane Bouhali

Texas A&M University at Qatar

Outline

- Proposed GEM layout for high eta upgrade
- Simulation results
- Future work

Proposed Layout

- Super Chambers (SC) equipped with triple GEMs
- each SC is a double readout layer
- Pitch from 0.6 to 1.2 mm

Proposed Layout: Super Chambers

Large size Triple-GEM chamber (Super Chamber)

GEM Simulation

Full chain: ANSYS+GARFIELD

- Gain vs HV (Ar/CO2 + CF4)
- Gain vs pitch
- Gain vs hole size uncertainty
- Gain vs gas gap uncertainty

GEM Simulation

The simulation was done taken into account different values For Penning transfer coefficient:

$$G = e^{lpha_{penning}.d}$$
 Excited level energy
$$\alpha_{penning} = \alpha (1 + r_p \frac{f_{exc}}{f_{ion}})$$
 Ionization potential energy

Results will be shown for different values of r_p

Gain vs HV: Ar/CO₂ 70/30

 $r_p = 1, 0.7$ and 0.4 from top to bottom

Crosses: experimental values

Gain vs HV: Ar/CO₂/CF₄ 45/15/40

 $r_p = 1, 0.7$ and 0.4 from top to bottom

Crosses: experimental values

Gain vs pitch

Effective Gain

HV= 3650, 3850, 4050 and 4250 from bottom to top

Less 15 % of gain variation can be observed

Gain vs Hole size uncertainty

Open (full) circle: effective (total) gain 5% variation in hole diameter can lead to 20% variation Effective gain is less affected

Summary and ongoing work

- Extensive simulation work is undergoing
- Ongoing work:
 - Effect of gas gap variation on gain
 - Effect of temperature variation
 - Sensitivity studies (incident particle/electron energy
 - Alternative gas mixtures (Ne and He based)

What I did not show:

- Gain versus gas gap variation (drift, transfer1, transfer 2 and induction)
- Gain versus temperature variation
- All results have been put in a paper/submitted to NIM/