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Basic references for the Higgs ptH spectrum, including multiple parton emissions

® Analytical resummation of the Higgs ptH spectrum in HQET

Balazs, Yuan, arXiv:hep-ph/0001 103
Bozzi, Catani, De Florian, Grazzini, arXiv:hep-ph/0508068
De Florian, Ferrera, Grazzini, Tommasini, arXiv:l109.2109

® Shower Montecarlo description of the Higgs ptH spectrum in HQET

Frixione, Webber, arXiv:hep-ph/0309186
Alioli, Nason, Oleari, Re, arXiv:0812.0578
Hamilton, Nason, Re, Zanderighi, arXiv:1309.0017

® quark mass effects
Bagnaschi, Degrassi, Slavich,Vicini, arXiv:1111.2854
Mantler, Wiesemann, arXiv:1210.8263
S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012
Grazzini, Sargsyan, arXiv:1306.458 |
S. Frixione, talk at the HXSWG meeting, July 23rd 2013
A.Vicini, talk at the HXSWG meeting, July 23rd 2013
Banfi, Monni, Zanderighi, arXiv:1308.4634
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http://link.springer.com/article/10.1007%252FJHEP02%25282012%2529088
http://link.springer.com/article/10.1007%252FJHEP02%25282012%2529088
http://arxiv.org/abs/arXiv:1210.8263
http://arxiv.org/abs/arXiv:1210.8263
http://iopscience.iop.org/1126-6708/2009/04/002/
http://iopscience.iop.org/1126-6708/2009/04/002/

Outline

® matching NLO matrix elements for inclusive Higgs production and Parton Shower
® quark mass effects in the SM

® two-scales vs one-scale description of the Higgs ptH distribution
in presence of quark mass effects

® one (old) MSSM example to emphasize the role of the ptH distribution to recognize BSM signals
® Higgs production via gluon fusion in the 2HDM in the POWHEG-BOX

® one 2HDM example in the decoupling limit: possible issues in the searches for a heavy Higgs
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Higgs transverse momentum distribution in the HQET (heavy top limit)
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e the Higgs transverse momentum is due to its recoil against QCD radiation DO""”
3
Bozzi Catani De Florian Grazzini, arXiv:hep-ph/0508068 /‘56
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e at low ptH, the fixed order ptH distribution diverges for ptH =+ 0  (both at LO and at NLO)

® the resummation to all orders of the divergent log(ptH) terms yields a regular distribution
in the limit ptH — 0

different approaches: analytical (up to NLO+NNLL), via Parton Shower (up to LO+NLL)
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Quark mass effects at fixed order (no resummation, no Parton Shower)
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® very good agreement between independent codes

M(gg — gH)|? = My + My|* = M2 + 2Re(M M) + | M, |?

® every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling
— the bottom diagrams have a suppression factor mb/mt ~1/36 w.r.t. the corresponding top diagrams
— the squared bottom diagrams are negligible (in the SM)

the bottom effects are due to the top-bottom interference terms (genuine quantum effects)
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Matching NLO matrix elements and Parton Shower
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Matching NLO matrix elements and Parton Shower

_ . R?(®
dO_NLO—I—PS — d(DBBS((I)B) [AS(prJr_lln) _l_ d(I)R‘B ( R)
B(®p)

AS(pT((I)))] + d(I)RRf((I)R) _l_d(I)RRreg(q)R)

B® = B(®p) + [V((I)B) + /dq)R|BRS((I)RB)]
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Matching NLO matrix elements and Parton Shower

_ - R?(®
dO_NLO—l—PS _ d(bBBS((I)B) [AS(prJr_lln) + d(I)R‘B ( R)
B(®p)

AS(pT((I)))] + d(I)RRf((I)R) _|_d(I)RR7"eg((I)R)

B® = B(®p) + [V((I)B) + /dq)R|BRS((I)RB)]

R = Rreg + R;,, Isthe sum of all the real emission squared matrix elements,

with a regular (divergent) behavior in the collinear limit

Ry, = R% + Rf the collinear divergent matrix elements can be split in the sum of
their singular part plus a finite remainder
R®  enters in the Sudakov form factor A® (pT((I)))
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Matching NLO matrix elements and Parton Shower
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dO_NLO—l—PS _ d(bBBS((I)B) [AS(prJr_lln) + d(I)R‘B ( R)
B(®p)

AS(pT((I)))] + d(I)RRf((I)R) _|_d(I)RR7"eg((I)R)

B* = B(®p) + [V((I)B) + / dq’mBRS(@RB)]

R = Rreg + R;,, Isthe sum of all the real emission squared matrix elements,

with a regular (divergent) behavior in the collinear limit

R, = R% + Rf the collinear divergent matrix elements can be split in the sum of
their singular part plus a finite remainder
R®  enters in the Sudakov form factor A’ (pT((I)))

POWHEG MC@NLO
h? 2 R® x Z2Py;(2)B(®
RS — QRdz'v Rf: Pr sziv X 4 J(z) ( B)
h? + pg, h? + p7
R/ =R- R
at low ptH, the damping factor = |, R_div tends to its collinear approximation,

at large ptH, the damping factor — 0 and suppresses R_div in the Sudakov and in the square bracket

the scale h fixes the upper limit for the Sudakov form factor to play a role,
effectively is the upper limit for the inclusion of multiple parton emissions

the total cross section does NOT depend on the value of h
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Quark mass effects after the resummation of multiple gluon emissions (end 201 3)

e the Higgs ptH spectrum, with quark masses, is a 3 scales problem (mb, MH, mt),
the first “threshold” of the hard scattering process is at ptH ~ mb

IM(t + b)‘2 = ]./\/l(t)‘2 + [2Re,/\/l (t)/\/lT(b) + ‘M(b)]ﬂ M. Grazzini, H. Sargsyan, arXiv: 1 306.458|

high scale low scale

® HRes: two different resummation scales (QI and Q2)

POWHEG: two different values of the parameter h (ht and hb)
MC@NLO: two different scales at which the shower is switched off
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® good agreement in the comparison of (MC@NLO, POWHEG) vs HRes

e the “old” differences between MC@NLO and POWHEG apparently stem from the region of

intermediate ptH, together with the unitarity constraint
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POWHEG comparison
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® ht: 50 GeV (from helicity analysis) and 90 (from tuning with HRes)
hb: 4 mb (from helicity analysis) and mb (as in HRes)

® in the SM the top-quark amplitude is dominant and thus the choice of ht is crucial for the shape

e differences appear in the low (ptH<I0 GeV) and in the intermediate (20<ptH<50 GeV) regions

® setting hb=4 mb obviously reduces the difference between the two approaches

® in the intermediate ptH region, the differences do not exceed the 5% level
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POWHEG comparison of PYTHIA 6 vs PYTHIA 8 effects

do /dp (pb/GeV)
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e starting from the same LHEF events, shower with PYTHIA8 AU2 CTEQ6L

PYTHIA6.4

® important change (-7%) of the height of the peak of the distribution (from PY6 to PY8)

® unitarity forces the high-ptH tail of the distribution to increase, by +7%, for ptH>70 GeV

e the effect is almost independent of the chosen value of h

® the tuning of h is affected by the change of the shower (PYTHIA6 h = MH/I.2 ~105 GeV,
PYTHIA8 h =~90 GeV)
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Higgs production via gluon fusion in POWHEG
in the MSSM and in the 2ZHDM

® Higgs production via gluon fusion in the MSSM available in the POWHEG-BOX
directory gg H MSSM

® it requires FeynHiggs to consistently compute the relevant MSSM parameters;

a consistent treatment of the Higgs decay, based on PYTHIA, can be obtained using
the SLHA format to communicate all the MSSM parameters

® Higgs production via gluon fusion in the 2HDM available in the POWHEG-BOX
directory gg H 2HDM

e it requires HDECAY to consistently compute the total decay width in the 2HDM
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Ratios full MSSM/SM, hg production

mQ=mU=mD=1000 GeV, X'=2500 GeV, M3=800 GeV, M,=2 M;=200 GeV
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Ratios full MSSM/SM, hg production
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The 2HDM in a nutshell

® 2 complex scalar doublets ®; and ®, withVEVs v; and v,
3 d.o.f. are the longitudinal polarization of Ws and Z
5 d.of. are in the physical spectrum: 2 charged scalars, 2 neutrals CP-even, | neutral CP-odd

® input parameters are: &, tanP= v,/vy, Mh,MH, MA, M1, M,
® the presence of additional discrete symmetries forbids the appearance of tree-level FCNC

leading to different types of models;
the couplings of the Higgs scalars to fermions are:

Type 1 Type 11 Lepton-specific Flipped
% | cosa/sin 3 cos o/ sin 3 cos o/ sin 3 cos a/ sin 3
4 1 cosa/sinf3 —sin a/ cos B cos o/ sin 3 —sin v/ cos B
¢ | cosa/sin 3 —sina/ cos 3 —sina/ cos B cos a/ sin 3
% | sina/sin 8 sin o/ sin 3 sin o/ sin 8 sin a/ sin 8
4 | sina/sinf cos a/ cos 3 sin o/ sin 3 cos o/ cos
& | sina/sinf3 cos a/ cos cos a/ cos 3 sin o/ sin 8
4 | cot B cot 8 cot (3 cot 3
4 | —cotf tan 8 —cot 8 tan 8
S | —cotp tan tan 3 —cot 8

Alessandro Vicini -

University of Milano
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a 2HDM run in POWHEG

® model input parameters

the user chooses -the values of the input parameters «, tanf3 and the Higgs mass (Mh, MH, MA)
-the type of 2HDM model ( | and Il implemented, same conventions as in SusHi)
and writes them in  powheg.input

the same values should be written in the HDECAY input file hdecay.in together with a choice
for Mi, M]_z

HDECAY must be started first to compute the Higgs decay widths in that parameter space point;
the total widths are written in br.l3_2HDM, br.hd_2HDM, br.ad_2HDM
— these files must be present in the POWHEG run directory

e QCD and generation parameters are defined as usual in powheg.input
the complex pole scheme, relevant for the heavy Higgs studies, is not yet available

Alessandro Vicini - University of Milano June 17th 2014
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Differences with respect to the SM analysis

e in the type ll, the coupling to down-type fermions is enhanced by tanf3
the role of the bottom-quark amplitude, in the interference with the top, but also squared,
can be radically different than in the SM

® some trivial cases are excluded by the experimental available constraints on a light scalar;
other scenarios (e.g. heavy Higgs searches in the decoupling limit) can be delicate

® the inclusion of resummation effects is more problematic than in the SM:
it is a 3 scales problem (O(mb), O(m_phi), O(mt) ), like in the SM, but
the bottom amplitude is NOT a small correction, it can be the leading contribution

e following a two-scales approach,
up to which scale can we safely apply the resummation formalism to the top (bottom) contributions ?
are these scales dependent on MH ?

® is a one-scale approach viable?
if yes, up to which scale can we safely apply the resummation formalism ?

Alessandro Vicini - University of Milano June 17th 2014
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Light and Heavy CP-even Higgs and in a decoupling limit

e in a type Il 2HDM, the choice &=B-T1/2 is called a decoupling limit because
it makes the light CP-even scalar h SM-like, i.e.the couplings to the fermions are like in the SM

® the couplings of the heavy CP-even scalar H to the fermions instead
are tan enhanced (down type) or suppressed (up type) w.r.t. the SM ones
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® in this decoupling limit the light CP-even scalar is SM-like (cfr red vs black)
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Light and Heavy CP-even Higgs and in a decoupling limit

® the prediction for the heavy CP-even scalar is dominated by the bottom-quark amplitude

® the use of ht=MH/|.2 as single scale (light green line) is not justified

® the use of two scales represents the most conservative recipe developed so far
in this specific example ht=125 GeV and hb=60 GeV (red line)

® the use of ht as single scale (blue line) differs from the two-scales treatment at the £30% level

® given the bottom dominance, the two-scales result is perfectly approximated by h=hb=60 GeV
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Conclusions

® the enhanced role of the bottom-quark amplitude requires a two-scale approach
to set the resummation scales

this approach treats in a conservative way the bottom terms in the amplitude
® a one-scale approach may provide a good approximation of the two-scales results:

in the SM the approximation is, in the worst case, at the 5% level;
in BSM models the precise value of the single scale strongly depends on tanf8

® the precise measurement of the Higgs ptH distribution can help to recognize a BSM signal,
even with a total rate for the light scalar compatible with the present data

Alessandro Vicini - University of Milano June 17th 2014
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Exact matrix elements and collinear limit

Mm)P = Y MMRm)P =y MG (m) fpl + MRz (m)

>\17)\27>\3::|:1 >\17)\27>\3::|:]—

® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o ° ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pf) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way
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Exact matrix elements and collinear limit

Mm)P = Y MMRm)P =y MG (m) fpl + MRz (m)

>\17>\27>\3::|:1 >\17)\27>\3::|:]-

® we discuss the validity of the collinear approximation of the amplitude,
to find the value of ptH where the non-factorizable terms become important;
o . ° . .
a 10% deviation is considered relevant Mezact(pt)[?

C(pf) =
(PL) Mo (piF) /5|2

® the breaking of the collinear approximation signals that
the log(ptH) resummation formalism, which is based on the collinear factorization hypothesis
can not be applied in a fully justified way

® 8 helicity amplitudes: 2
related by parity (4+4) and by the symmetry of the process | M2
® we discuss, at fixed partonic s, the 3 amplitudes
with a soft+collinear or only collinear divergence for u—0 ) i
(NP s
® dominance of the amplitudes with soft+collinear divergence T

® the results depend on partonic s; the choice of the smallest possible s allowed value guarantees
that the contribution under study has the largest PDF weight at hadron level
(small changes when using other choices of s)

Alessandro Vicini - University of Milano CERN, December 17th 2013
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Toy example to illustrate the role of tanf:

light Higgs with mh=125 GeV
1

! b
tanﬁM + tan 6 M

M:

amplitudes evaluated with: only top, only bottom, top+bottom

//_\
/\

08|

02}

06

04

— ptH

S L e e e e
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ptH
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ngle-quark ratios are independent of tanf3
e for the full amplitude, the scale choice at which the collinear approximation fails

is dominated by the bottom at large tanf3
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Toy example to illustrate the role of tanf3: heavy Higgs with MH=500 GeV

M:

1
tan

Mt + tan S M

amplitudes evaluated with: only top, only bottom, top+bottom

c c c
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® the large MH value pushes the scale at which the collinear approximation fails
for the only-bottom case, towards hb ~ 50 GeV
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Comments

® in the two-scales approach,
the scale at which the factorization breaks, for the only-top and for the only-bottom amplitudes,
is independent of tanf3, but depends on MH:

for the top, ht ~ O(60 GeV) with MH=125 GeV and ht ~ O(125 GeV) for MH=500 GeV
for the bottom, hb ~ O(20 GeV) with MH=125 GeV and hb ~ O(60 GeV) for MH=500 GeV

it is possible to prepare a table of ht and hb as a function of MH

® in the two-scales approach,
we use ht for the only-top squared amplitude
hb for the interference terms and bottom squared amplitude
we potentially miss the resummation of terms proportional to the top-bottom interference
(only keep the first term from the fixed-order calculation)

® a one-scale approach is possible,
but the value of the scale h from the amplitude analysis strongly depends on tanf3
there are regimes where a one-scale approach offers a good approximation of the two-scales results
but it requires an ad hoc tuning

® the usage of h=MH/1.2 for a heavy Higgs is not justified! (e.g.for MH=500 GeV we get h=416 GeV)

Alessandro Vicini - University of Milano June 17th 2014
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