The Challenges of Long-Term Data Preservation

Data Preservation, Curation & Stewardship

Jamie.Shiers@cern.ch

Big Data Applications in Science & Industry Budapest, March 2015

International Collaboration for Data Preservation and Long Term Analysis in High Energy Physics

Introduction

- This presentation is based on the paper attached to the agenda
- It tells a story how collaboration between experts in different disciplines can rapidly lead to a solution
 - Each "partner" comes with different technologies: working together we can solve problems faster, better and in a more sustainable fashion
 - The "HEP gene pool" is quite large (20K) but also quite closed...
- It finishes with some un-answered questions: areas for future work (& collaboration)

2020 Vision for LT DP in HEP

- Long-term e.g. FCC timescales: disruptive change
 - By 2020, all archived data e.g. that described in DPHEP Blueprint, including LHC data easily findable, fully usable by designated communities with clear (Open) access policies and possibilities to annotate further
 - Best practices, tools and services well run-in, fully documented and sustainable; built in common with other disciplines, based on standards
 - DPHEP portal, (FAIRport?) through which data / tools accessed
- Agree with Funding Agencies clear targets & metrics

No "One Size Fits All"

- DP: theory and practice driven by disciplines that make "observations"
 - By definition unrepeatable
- They have developed a set of ISO standards that are "adopted" by ~all disciplines WW
 - There is a large amount of deep expertise, training materials and so forth – no "wheel to re-invent"
- Other disciplines e.g. public / private archives have clearly defined "data destruction" policies
- ➤ YOU need to work out WHAT you want to keep and WHY – WHO will pay and WHY

12-12ong@ail@bf@papers@

22-INew Theoretical Insights 2

3₽ ② Discovery ② To ② Precision ②

possible long-term time line

Use Case Summary

- 1. Keep data usable for ~1 decade
- 2. Keep data usable for ~2 decades
- 3. Keep data usable for ~3 decades

Volume: 100PB + ~50PB/year (+400PB/year from 2020)

Zimmermann 51

Alain Blondel TLEP design study r-ECFA 2013-07-20

7

4C Roadmap Messages

A Collaboration to Clarify the Costs of Curation

- 1. Identify the value of digital assets and make choices
- 2. Demand and choose more efficient systems
- 3. Develop scalable services and infrastructure
- 4. Design digital curation as a **sustainable** service
- 5. Make funding **dependent** on costing digital assets across the whole lifecycle
- 6. Be collaborative and transparent to drive down costs

 OSD@Orsay Jamie.Shiers@cern.ch

OAIS – ISO 14721:2003

Data Seal of Approval: Guidelines 2014-2015 Guidelines Relating to Data Producers:

- 1. The data producer deposits the data in a data repository with sufficient information for others to assess the quality of the data and compliance with disciplinary and ethical norms.
- 2. The data producer provides the data in formats recommended by the data repository.
- 3. The data producer provides the data together with the metadata requested by the data repository.

Guidelines Related to Repositories (4-8):

- 4. The data repository has an explicit mission in the area of digital archiving and promulgates it.
- 5. The data repository uses due diligence to ensure compliance with legal regulations and contracts including, when applicable, regulations governing the protection of human subjects.
- 6. The data repository applies documented processes and procedures for managing data storage.
- 7. The data repository has a plan for long-term preservation of its digital assets.
- 8. Archiving takes place according to explicit work flows across the data life cycle.

Guidelines Related to Data Consumers (14-16):

- 14. The data consumer complies with access regulations set by the data repository.
- 15. The data consumer conforms to and agrees with any codes of conduct that are generally accepted in the relevant sector for the exchange and proper use of knowledge and information.
- 16. The data consumer respects the applicable licences of the data repository regarding the use of the data.

IBMB50RAMACE

1956, 135 13M ch, 138 13K ch/s 13O 2

PDP@DECtape?

1970, **1**44K **1**8_**1**bit **1**words **1**

Towards a CERN DP Strategy?

- 1. The updated Strategy for European Particle Physics, approved by Council in May 2014, states that "infrastructures for ... data preservation ... should be maintained and further developed."
- 2. Such infrastructures include *digital repositories*, where *copies* or *replicas* of the data are kept.
- As host laboratory, it is expected that (from now on?)
 a copy of all data acquired by CERN experiments and
 targeted for long-term preservation be stored in the
 CERN digital repository. [...]
- 4. It is strongly recommended that one or more copies of the above data are maintained outside, at or spread over institutes that form part of the collaboration.

Use Cases – LHC (and LEP)

- Preserve data, software, and know-how in the collaborations
- Share data and associated software with larger scientific community – O(PB) in 2020?
- Open access to reduced data sets to general public – O(TB) ?
- Bit preservation (O(100PB) today, 1EB ~2025, 10EB ~2035 – ALREADY "FILTERED")
- Policies: http://opendata.cern.ch/collection/data-policies

http://opendata.cern.ch/collection/data-policies

ATLAS Data Access Policy

This document contains the policy document regarding the access to ATLAS data by non-ATLAS members which was endorsed by the ATLAS Collaboration Board in June 2014.

Collection Data-Policies | DOI 10.7483/OPENDATA.ATLAS.T9YR.Y7MZ

ALICE data preservation strategy

This document contains the ALICE data preservation strategy and policy.

Collection Data-Policies | DOI 10.7483/OPENDATA.ALICE.54NE.X2EA

CMS data preservation, re-use and open access policy

This document describes the CMS collaboration's policy on long-term data preservation, re-use and open access. The policy has been approved by the CMS Collaboration Board in March 2012.

Collection Data-Policies | DOI 10.7483/OPENDATA.CMS.UDBF.JKR9

LHCb External Data Access Policy

This document contains the LHCb Data Access Policy. This was adopted at the Collaboration Board meeting on 27th Feb. 2013.

Collection Data-Policies

DOI 10.7483/OPENDATA.LHCb.HKIW.TWSZ

Author Clarke, Peter

http://opendata.cern.ch/collection/data-policies

2020 Vision For TDP In THEP?

- - By②2020,@Illarchiveddata②-@.g.Thatdescribed③n②PHEPBlueprint,② including③LHCdata②-@-asily@indable,@ully@usable@byddesignated② communities③vithdelear④Open)@ccesspolicies@and@ossibilities④c② annotate⑤further②

₹₽

- Best@ractices,@tools@and@services@vell@run-in,@fully@documented@and@sustainable;@built@n@common@vith@bther@disciplines,@based@bn@standards@
- ➤ Agree®vithFunding®Agencies®clear®targets®®metrics®

http://science.energy.gov/fundingopportunities/digital-data-management/

- "The focus of this statement is sharing and preservation of digital research data"
- All proposals submitted to the Office of Science (after 1 October 2014) for research funding must include a Data Management Plan (DMP) that addresses the fellowing requirements:
- DMPs should describe whether and how data generated in the course of the proposed research will be shared and preserved

If the plan is not to share and/or preserve certain data, then the plan must explain the basis of the decision (for example, cost/benefit considerations, other parameters of feasibility, scientific appropriateness, or limitations discussed in #4).

At a minimum, DMPs must describe how data sharing and preservation will enable validation of results, or how results could be validated if data are not shared or preserved.

Repack

http://indico.cern.ch/event/CERN-ITTF-2014-09-26

Repack Datavolume Over Time

100

Wed Jan 1

Wed Jan

- · All repacked media has been verified
- All problem source tapes identified and being handled (cf next slides)
- Cleanup of tape pools and (properly) establishing double copies
 - · across buildings
 - complete second copies where missing (ie OPAL)

DP – 'The Big Rocks"

- 1. The Data itself: don't try to do it alone don't try to do it at home: Scale & Sustainability
- 2. The Business Case this will (probably) be specific to your domain; your Use Cases; but sharing with others will help
- 3. "Knowledge capture & preservation"
- Not specific tools, such as portals, digital libs etc.

The Challenge(s)

 Reproducibility of results – over long periods of time and changing einfrastructures

 Data Sharing – even with long-ish embargo periods – can translate to significant demands

3. From Open Access to Open Data to Open Knowledge

Some Questions re Open Data

- The volumes involved at least for HEP could reach many PB or even beyond.
- Who will pay? (Cost Recovery Patterns in Research Data Repositories)
 - Is it financially affordable?
 - Is it technically implementable?
 - Is it scientifically (or educationally, or culturally) meaningful?
- The answers to these questions may well vary with time (see LEP) and also depend on the implementation(s) that we choose:
- Open Access is just one step in the progression towards Open Data and finally "Open Knowledge".

2020 Vision for LT DP in HEP

- Long%erm**e.q.*FCC*/ mescales: "disrup/ve*thange*
 - By 2020, all archived/data e.g. that described in <u>DPHEP Blueprint</u> including LHC data easily findable, fully usable by designated) communi4es with clear (Open) access policies and possibilities to
 - Best practices, tools and services well run-in, fully documented and sustainable; built in common with other)disciplines, based on standards
- DPHEP)portal, through which data / tools accessed "HEP)FAIRport":)Findable,)Accessible,)Interoperable,)ReBusable)
- Agree)with)Funding)Agencies)clear)targets)&)metrics)

1"-"Long"Tail"of"Papers"

2"-"New"Theore+cal"Insights"

3. Keep\$data\$usable\$for\$*3\$decades\$

(+500PB/yearfrom 2025) 2

4C Roadmap Messages A Collaboration to Clarify the Costs of Curation

- Identify the value of digital assets and make
- 2. Demand and choose more **efficient** systems
- Develop scalable services and infrastructure
- 4. Design digital curation as a sustainable service
- Make funding dependent on costing digital
- assets across the whole lifecycle 6. Be collaborative and transparent to drive

Balance'sheet'-'Tevatron@FNAL

- · 20 year investment in Tevatron Students
- · Magnets and MRI
- · Compu>ng'
- ~'\$50B'total'

Very%ough%alcula- on%%ut%onfirms%ur%jut%eeling%hat% investment%n%undamental%cience%ays%ff%%

I think there is an opportunity for someone to repeat this

exercise more rigorously

cf. STFC study of SRS Impact

Science & Technology

i) The success of particle physics experiments, such as those required for the high-luminosity LHC. relies on innovative instrumentation, state-of-the-art infrastructures and large-scale data-intensive computing. Detector R&D programmes should be supported strongly at CERN, anional institutes, laboratories and universities. Infrastructure and engineering capabilities for the R&D programme and construction of large detectors, as well as infrastructures for data analysis, data pres and distributed data-intensive computing should be maintained and further developed

What Next?

- Training on, and certification of, sites as "Trusted Digital Repositories"
- **Expanding "DPHEP Portal" to other (non-LHC)** experiments and external sites
- Supporting key experiment Use Cases / Funding **Agency Requirements**
 - Reproducibility, Open Access for Outreach, DMPs
- > Ensuring everything is sustainable, documented, "standards-based" and complete