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Drell-Yan at NNLO

Why going NNLO?

sometimes NLO not enough:

- large NLO/LO “K-factor”
[as in Higgs Physics]

- very high precision needed
[PDF extraction / W -mass measurement /
luminosity monitoring, ...]

⇒ NNLO

NNLO is the frontier:
first 2→ 2 NNLO computations in 2012-13 !

here focus on Drell-Yan

[Anastasiou et al., ’03]

� aim: build an event generator that is NNLO accurate (NNLOPS)

- the approach presented here was used for Higgs production
- we are currently finalising results for neutral & charged Drell-Yan

[Karlberg,Re,Zanderighi ’14 (WIP)]
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V+j @ NLOPS

1. V +j @ NLO, V +jj @ LO ⇒ use V +j @ NLOPS (POWHEG)

dσPOWHEG = dΦn B̄NLO(Φn)

{
∆(Φn; kmin

T ) + ∆(Φn; kT)
αs

2π

R(Φn,Φr)

B(Φn)
dΦr

}

B̄NLO(Φn) dΦn = αS(µR)
[
B + α

(NLO)

S V (µR) + α
(NLO)

S

∫
dΦrR

]
dΦn

mV

qT

V +j is a 2-scales problem (→ choice of µ not unique)

� want to reach NNLO accuracy for e.g. yV , η`, kT,`(< MV /2), i.e. when fully inclusive
over QCD radiation

- need to allow the 1st jet to become unresolved
- the above approach needs to be modified: as it stands, B̄NLO(Φn) is not finite when
qT → 0!
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MiNLO

2. integrate over phase space regions where V is produced with arbitrarily soft/collinear jet
(i.e. finite results when integrating over all qT spectrum)

MiNLO: Multiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

original goal: method to a-priori choose scales in multijet NLO computation (where
hierarchy among scales can spoil accuracy since resummation of logs is missing)
how: correct weights of different NLO terms with CKKW-inspired approach:

- for all PS points, build the “more-likely” shower history that would have produced it
(can be done by clustering kinematics with kT -algo)

- correct original NLO including αS couplings evaluated at nodal scales and Sudakov FFs

- make sure that NLO accuracy is not spoiled !

B̄NLO = αS(µR)
[
B + α

(NLO)

S V (µR) + α
(NLO)

S

∫
dΦrR

]
B̄MiNLO = αS(qT )∆2

q(qT ,mV )
[
B
(

1− 2∆
(1)
q (qT ,mV )

)
+ α

(NLO)

S V (µ̄R) + α
(NLO)

S

∫
dΦrR

]

- µ̄R = qT

- log ∆f (qT ,mV ) = −
∫ m2

V

q2
T

dq2

q2

αS(q2)

2π

[
Af log

m2
V

q2
+ Bf

]

- ∆
(1)
f

(qT ,mV ) = −
α
(NLO)
S

2π

[ 1

2
A1,f log

2 m
2
V

q2
T

+ B1,f log
m2

V

q2
T

]
- µF = qT

� Sudakov FF included
on V +j Born kinematics

- VJ-MiNLO yields finite results also when 1st jet is unresolved (qT → 0)
- B̄MiNLO ideal to extend validity of V +j POWHEG
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NNLO+PS

after further refinements (in particular include B2 coefficient in MiNLO Sudakov), one can prove that
VJ-MiNLO differential cross section dσVJ−MiNLO is NLO accurate when fully inclusive
over QCD emissions [Hamilton,Nason,Oleari,Zanderighi ’13]

W (ΦB) =

(
dσ
dΦB

)
NNLO(

dσ
dΦB

)
VJ−MiNLO

=
c0 + c1αS + c2α2

S

c0 + c1αS + d2α2
S

' 1 +
c2 − d2

c0
α2

S +O(α3
S)

reweighting each “MiNLO-generated” event (from LH file) with this factor, we get
NNLO+PS
- clear for fully-inclusive oservables (ΦB)

- “αS + α2
S” accuracy of VJ-MiNLO in 1-jet region not spoiled, because

W (ΦB) = 1 +O(α2
S)

for Higgs production, the function W was simply a function of yH :

W (ΦB)→W (y) =

(
dσ
dy

)
NNLO(

dσ
dy

)
VJ−MiNLO

=
c0α2

S + c1α3
S + c2α4

S

c0α2
S + c1α3

S + d2α4
S

' 1+
c2 − d2

c0
α2

S+O(α3
S)
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NNLO+PS II

For Drell-Yan, needs to use variables specifing the Born process pp→ `¯̀

↪→ also need variable to take into account spin-correlation in vector-boson decay products

we need a 3-d differential distribution, and there is some freedom in choosing the 3
variables
↪→ Useful to make choices such that bins in multidimensional distribution are ∼ uniformly
populatad

we have chosen:

V -boson rapidity: yV
variable for dilepton invariant mass: arctan((m2

`` −M
2
V )/(ΓVMV ))

angle between electron and beam in frame where pzV = 0

- Variants for W are possible:

W (ΦB , pT ) = h(pT )

∫
dσNNLO
A δ(ΦB − ΦB(Φ))∫

dσMiNLO
A δ(ΦB − ΦB(Φ))

+ (1− h(pT ))

dσA = dσ h(pT ), dσB = dσ (1− h(pT )), h =
(βmV )2

(βmV )2 + p2
T

- h(pT ) controls where the NNLO/NLO K-factor is distributed
(in the high-kT region, there is no improvement in including it)

- β cannot be too small, otherwise resummation spoiled
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NNLO+PS III

In 1309.0017, and for DY too, we use

W (ΦB , pT ) = h(pT )

∫
dσNNLOδ(ΦB − ΦB(Φ))−

∫
dσMiNLO
B δ(ΦB − ΦB(Φ))∫

dσMiNLO
A δ(ΦB − ΦB(Φ))

+(1−h(pT ))

dσA = dσ h(pT ), dσB = dσ (1− h(pT )), h =
(βmV )2

(βmV )2 + p2
T

one gets exactly (dσ/dΦB)NNLO (no α3
S terms)

we used h(pj1T ), and β = 1

inputs for following plots:
- scale choices: NNLO input with µ = mV , VJ-MiNLO has its own scale

- PDF: everywhere MSTW2008 NNLO

- NNLO from DYNNLO [Catani,Cieri,Ferrera et al.]
(3pts scale variation, but 7pts in pure NNLO plots)

- MiNLO: 7pts scale variation (using POWHEG BOX-V2 machinery)

- events reweighted at the LH level: 21-pts scale variation (7Mi × 3NN)
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Validation results: Z, PS level (I) Preliminary
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(7Mi × 3NN) pts scale var. in NNLOPS, 7pts in NNLO

agreement with DYNNLO

scale uncertainty reduction wrt ZJ-MiNLO
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Validation results: Z, PS level (II) Preliminary
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NNLOPS: smooth behaviour at small kT, where NNLO diverges

at high pT , all computations are comparable (band size similar)

at very high pT , DYNNLO and ZJ-MiNLO (and hence NNLOPS) use different scales !

NNLO envelope shrinks at ∼ 10 GeV; NNLOPS inherits it
- uncertainties become in fact larger when NP-effects included
- see also comparison with resummation
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Validation results: W, PS level Preliminary
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not the observables we are using to do the NNLO reweighting

we see exactly what we expect: pT,` has NNLO uncertainty if pT < MW /2, NLO if
pT > MW /2, η` is NNLO everywhere

smooth behaviour when close to Jacobian peak and thin binning

just above peak, DYNNLO uses MW , WJ-MiNLO uses pT,W and here 0 . pT,W .MW
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Vector boson pT : resummation and data Preliminary
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resummation from DyQT [Bozzi,Catani,Ferrera, et al]

good agreement with data (PS+hadronisation+MPI)

agreement with resummation good (PS only), but not perfect
- formal accuracy not exactly the same
- shrinking of bands makes it looking perhaps worse than what it is...
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Vector boson pT (new-released data!) Preliminary
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φ∗: resummation and data Preliminary
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- θ∗ is the scattering angle of the electron with respect to the beam, in Z boson rest frame
- ATLAS uses slightly different definition cos θ∗ = tanh((yl− − yl+ )/2)

comparison with resummation [Banfi et al.] not very good at small φ∗

non-perturbative effect seem important here, and indeed agreement with data is much
better

NP-effects observed here have same pattern as those discussed in Banfi et al. [1102.3594]
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Vector boson pT : data comparison for pT,W Preliminary
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data comparison both with Pythia6 and Pythia8
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Few technical details

we use as input distributions from DYNNLO

POWHEG+MiNLO events generation is highly parallelizable: grids (30 cores) +
generating 20M events (+ reweighting to have 7-pts scale uncertainty) (400
cores): ∼ 2 days

“MiNLO-to-NNLO” rescaling takes few hours (for all 20M events)

showering (+ hadronisation + MPI): ∼ 2 M events/day (on 1 core)
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Conclusions

shown results for Drell-Yan at NNLOPS
precision and theoretical uncertrainties match NNLO where they have to
resummation effects important when close to Sudakov regions
- agreement with data very good
- with resummation good agreement, but not always as good as one would have
hoped (especially for φ∗)
paper will be out soon, and code will follow soon afterwards
- we will release full code, but also prepare files for W function for LHC
7,8,13,14 TeV

looking forward for interesting phenomenology (for instance W -mass
measurement, interplay with EW effects,...)
at this level of precision, a dedicated tune is probably needed to have as much
consistency as possible everywhere

Thank you for your attention!
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