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DY Process

Drell Yan process is 
very important at 
hadron collider 

Detector Calibration 

Luminosity Monitor 

PDF Determination 

New Physics Search 

QCD and EW Study

NLO is only qualitative, 
need NNLO for high 
precision and reduced 
theoretical uncertainty  

Available fully 
differential code at NNLO 

FEWZ, DYNNLO 

Fixed order only, i.e. 
no automatic 
resummation from 
parton shower
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Implementation of 
NNLO in Sherpa

Use qT subtraction method by Catani and Grazzini 

easy to do 

Sherpa already has W/Z+1jet at NLO from Blackhat - 
very stable 

low qT behavior obtained from existing SCET results - 
well established 

generically compatible with PS matching 

qt cutoff roughly corresponds to parton shower cutoff 
scale 

Implementation in Sherpa: event generation, interface with 
Rivet 

Catani, Grazzini hep-ph/0703012 
Catani et al. arXiv:0903.2120
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Validation with 
FEWZ and VRAP

Comparison with FEWZ and VRAP

[Li,Prestel,SH] arXiv:1405.3607
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Validation with 
DYNNLO

Hoeche, Prestel, YL arXiv:1405.3607
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Merging
Merging 

combining ME of processes with different jet 
multiplicities 

higher order virtual matrix elements are 
approximated by expansion of Sudakov factor 

real radiation is resummed by parton shower in soft/
collinear region 

unitarity of the inclusive cross section of lower jet 
multiplicity is broken 

Example for LO merging: MLM, CKKW 

Extension to NLO merging: MEPS@NLO, UNLOPS, MiNLO
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Matching
Combining fixed order NLO calculation with parton shower 

Most widely used approaches: MC@NLO, POWHEG 

modified subtraction methods, which remove the first order 
expansion of the PS from the NLO, and add the shower on 
top, therefore restoring the NLO real emission pattern 

Here we will use UNLOPS approach: essentially unitarized 
merging of processes with n and n+1 jet multiplicities 

respect unitarity of inclusive result for n jet process: real 
matrix element is used for the first emission in the parton 
shower 

inclusion of 1-loop virtual correction to the n jet process 

Loennblad,Prestel arXiv:1211.7278 
Hoeche, Prestel, YL arXiv:1405.36078



Unitary ME+PS Merging
For any infrared observable “O” under parton shower: 

“B” is the tree level matrix element 

“F” is generating function of parton shower 

“Π” is the Sudakov factor, corresponding to probability of 
no emission; “K” is the splitting kernel used in parton shower

=

Z
d�0B0⇧0(tc, µ

2
Q)O(�0) +

Z

tc

d�1B0K0⇧0(t, µ
2
Q)F1(t,O)

=

Z
d�0B0O(�0)�

Z

tc

d�1B0K0⇧0(t, µ
2
Q)O(�0)

+

Z

tc

d�1B0K0⇧0(t, µ
2
Q)F1(t,O)

hOi =
Z

d�0B0F0(µ
2
Q,O)
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Unitary ME+PS Merging
To implement NLO matching 

use actual matrix element for the first 
emission 

“w” adjusts the renormalization and 
factorization scale of the real radiation 
matrix element to match parton shower 

!

add virtual correction to the zero bin by 
using jet-vetoed NLO cross section

B0 ! B̄tc
0 = B̄0 �

Z

tc

d�1B1

B0K0 ! w1B1

w1 =
↵S(t)

↵S(µ2
R)

fa(xa, t)

fa(xa, µ
2
F )

fb(xb, t)

fb(xb, µ
2
F )
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Unitary ME+PS Merging

Easy to implement using truncated shower 

Extension to NNLO 

Use standard MC@NLO for the first two emission 

subtlety arises in mapping two-emission events to zero 
bin since parton shower always yields ordered emission 
while actual matrix element does not, leaving sub-
leading logarithms of the cutoff not fully resummed: 
minimum impact given a reasonable cut-off 

Promote vetoed cross section to NNLO

Unitary Matrix-Element Parton-Shower merging
[Lönnblad,Prestel] arXiv:1211.4827

I PS expression for infrared safe observable, O

hOi =
Z

d�0 B0 F0(µ
2
Q ,O)

Fn(t,O) = ⇧n(tc , t)O(�n) +

Z t

tc

d�̂1 Kn ⇧n(t̂, t)Fn+1(t̂,O)

I Add ME correction to first emission (B0K0 ! B1) & unitarize

+

Z

tc

d�1 ⇧0(t1, µ
2
Q)B1 F1(t1,O)�

Z

tc

d�1 ⇧0(t1, µ
2
Q)B1 O(�0)

I ME evaluated at fixed scales µR/F ! need to adjust to PS

w1 =
↵s(b t1)

↵s(µ2
R)

fa(xa, t1)

fa(xa, µ2
F )

fa0 (xa0 , µ
2
F )

fa0 (xa0 , t1)

I Replace B0 by vetoed xs B̄tc
0 = B0 �

R
tc
d�1B1

hOi =
⇢Z

d�0 B̄
tc
0 +

Z

tc

d�1

h
1� ⇧0(t1, µ

2
Q)w1

i
B1

�
O(�0)

+

Z

tc

d�1 ⇧0(t1, µ
2
Q)w1 B1 F1(t1,O)
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Final Formula
Extension to NNLO – UN2LOPS

[Lönnblad,Prestel] arXiv:1211.7278
[Li,Prestel,SH] arXiv:1405.3607

I Promote vetoed cross section to NNLO

I Add NLO corrections to B1 using S-MC@NLO
I Subtract O(↵s) term of w1 and ⇧0

hOi =
Z

d�0
¯̄Btc
0 O(�0)

+
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⌘
B1 F̄1(t1,O)
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R
1 F̄1(t1,O)

+
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2
Q)H

R
1 F2(t2,O)

+

Z

tc

d�2 HE
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I B̃R
1 = B̄1 � B1 = Ṽ1 + I1 +

R
d�+1S1⇥(t2 � t1)

HR
1 (HE

1 ) ! regular (exceptional) double real configurations

Stefan Höche NNLO+PS in DY 3

Tree level amplitude and subtraction from Amegic or Comix 

One loop virtual matrix element from Blackhat 

NNLO vetoed cross section using recent SCET results 

Parton shower based on Catani-Seymour dipole 

Combined in Sherpa event generation framework

[Krauss,Kuhn,Soff] hep-ph/0109036, [Gleisberg,Krauss] arXiv:0709.2881, [Gleisberg,Hoeche] arXiv:0808.3674

[Berger et al.] arXiv:0803.4180, [Berger et al.] arXiv:0907.1984 arXiv:1004.1659 arXiv:1009.2338

[Becher,Neubert] arXiv:1007.4005, [Gehrmann,Luebbert,Yang] arXiv:1209.0682 arXiv:1403.6451 arXiv:1401.1222

[Schumann,Krauss] arXiv:0709.1027

[Gleisberg et al.] hep-ph/0311263 arXiv:0811.4622
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Comparison with S-MC@NLO
Good agreement with S-MC@NLO at low W pT 

W+1jet K factor at high W pT

Hoeche, Prestel, YL arXiv:1405.3607
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Comparison with 
experimental data

Comparison with experimental data

[Li,Prestel,SH] arXiv:1405.3607
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Hoeche, Prestel, YL arXiv:1405.3607

Generic setting of sherpa used, no tuning of the 
shower performed
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ATLAS (arXiv:1201.1276)
UN2LOPS
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agreement in the 
zero jet bin with 
reduced scale 
uncertainty 

Easily merge 
with NLO results 
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Comparison with 
experimental data
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Impact of PDFsImpact of PDFs
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I S-MC@NLO with NLO PDFs
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Impact of PDFsImpact of PDFs
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Impact of PDFsImpact of PDFs
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Other Application: Higgs
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FIG. 1. Rapidity spectrum (left) and transverse momentum spectrum (right) of the Higgs boson, computed at fixed order and
compared between Sherpa and HNNLO.
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FIG. 2. Rapidity spectrum of the Higgs boson in individual matching (left) and combined matching (right). See Sec. IV for
details.

In order to cross-check our implementation we first compare the total cross section to results obtained from
HNNLO [6, 25, 40]. Table I shows that the predictions agree within the permille-level statistical uncertainty of
the Monte-Carlo integration. Additionally, we have checked that our results are identical when varying qT,cut between
0.1 GeV and 1 GeV. The default value is qT,cut =1 GeV. Figure 1 shows a comparison of the Higgs rapidity and
transverse momentum spectrum between Sherpa and HNNLO. The excellent agreement over a wide range of phase
space confirms the correct implementation of the NNLO calculation in Sherpa.
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FIG. 3. Transverse momentum spectrum of the Higgs boson in individual matching (left) and combined matching (right). See
Sec. IV for details.

Figure 2 compares fixed-order predictions for the rapidity spectrum of the Higgs boson to matched results from
UN2LOPS. Both the individual and combined matching approach, introduced in Sec. IV yield perfect agreement for
the shape of the distribution, while the combined matching also slightly increases the cross section (see Sec. IV).

Figure 3 compares the UN2LOPS matched results to predictions from HqT[41], which performs an analytic matching
of the qT spectrum at NNLO+NNLL accuracy. As expected, the resummation uncertainty in UN2LOPS is larger.
Nevertheless, the central predictions agree quite well. This indicates that the impact of possible higher logarithmic
contributions should be small enough to be neglected for the purpose of event generation at the 14 TeV LHC.

VI. CONCLUSIONS

We presented the first application of the UN2LOPS matching procedure to Higgs-boson production through gluon
fusion. This reaction su↵ers from large higher-order corrections, and several refinements of the original UN2LOPS
approach are suggested to improve the matching. They allow to obtain phenomenologically useful results despite the
low logarithmic accuracy of the parton shower compared to analytic approaches. Our predictions are in fair agreement
with higher logarithmic resummation for a resummation scale of µQ ⇠ mH/2.

We also provide an independent implementation of a fully di↵erential NNLO calculation of Higgs-boson production
at hadron colliders, using the qT -cuto↵ method, which allows the production of LHEF files [42] or NTuple files [43]
containing NNLO event information at parton level.
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Based on an independent implementation of gluon 
fusion process at NNLO: verified with HNNLO
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Outlook
First practical implementation of NNLO+PS  for DY processes 

Matching scheme can be easily applied to a variety of processes 

Any NNLO code can be used in the matching by providing a jet 
vetoed cross section in the interface 

Event generation at both NNLO and NNLO+PS and interface with 
analysis tools such as Rivet available, thanks to the Sherpa 
framework 

Released as part of Sherpa soon 

Interesting phenomenology (NLO vs NNLO PDFs), may hint towards 
usefulness of NNLO PDFs for parton shower 

PS improvement desired for better overall accuracy
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