with Parton Shower

Ye Li

SLAC National Accelerator Laboratory

in collaboration with Stefan Hoeche and Stefan Prestel

June 30, 2014

Oulline

- DY W/Z Production
 at NNLO
- Parkon Shower
 Makching and
 Merging
- Application to DY
 Process

DY Process

- Drell Yan process is
 very important at
 hadron collider
 - Detector Calibration
 Luminosity Monitor
 PDF Determination
 New Physics Search
 QCD and EW Study
- NLO is only qualitative, need NNLO for high precision and reduced theoretical uncertainty
- Available fully
 differential code at NNLO
 - @ FEWZ, DYNNLO
 - Fixed order only, i.e.
 no automatic
 resummation from
 parton shower

Implementation of NNLO in Sherpa

· Use qT subtraction method by Catani and Grazzini

o easy to do

Catani, Grazzini hep-ph/0703012 Catani et al. arXiv:0903.2120

- Sherpa already has W/Z+1jet at NLO from Blackhat –
 very stable
- Low qT behavior obtained from existing SCET results well established
- o generically compatible with PS matching
 - gt cutoff roughly corresponds to parton shower cutoff
 scale
- Implementation in Sherpa: event generation, interface with <u>Rivet</u>

Validation with FENZ and VRAP

$E_{ m cms}$	7 TeV	14 TeV	33 TeV	100 TeV
VRAP	973.99(9) $^{+4.70}_{-1.84}$ pb	2079.0(3) $^{+14.7}_{-6.9}$ pb	4909.7(8) $^{+45.1}_{-27.2}$ pb	13346(3) $^{+129}_{-111}$ pb
SHERPA	973.7(3) $^{+4.78}_{-2.21}$ pb	2078.2(10) $^{+15.0}_{-8.0}$ pb	4905.9(28) $^{+45.1}_{-27.9}$ pb	13340(14) $^{+152}_{-110}$ pb

Hoeche, Prestel, YL arXiv:1405.3607

Validation with DYNNLO

Hoeche, Prestel, YL arXiv:1405.3607

Merging

o Merging

- combining ME of processes with different jet multiplicities
- higher order virtual matrix elements are approximated by expansion of Sudakov factor
- real radiation is resummed by parton shower in soft/ collinear region
- unitarity of the inclusive cross section of lower jet multiplicity is broken
- Example for LO merging: MLM, CKKW
- @ Extension to NLO merging: MEPS@NLO, UNLOPS, MINLO

Malching

- Combining fixed order NLO calculation with parton shower
- Most widely used approaches: MC@NLO, POWHEG
 - modified subtraction methods, which remove the first order expansion of the PS from the NLO, and add the shower on top, therefore restoring the NLO real emission pattern
- Here we will use UNLOPS approach: essentially unitarized merging of processes with n and n+1 jet multiplicities
 - respect unitarity of inclusive result for n jet process: real matrix element is used for the first emission in the parton shower
 - Inclusion of 1-loop virtual correction to the n jet process

Loennblad, Prestel arXiv:1211.7278 Hoeche, Prestel, YL arXiv:1405.3607

Unitary METPS Merging

· For any infrared observable "O" under parton shower:

- o "B" is the tree level matrix element
- "F" is generating function of parton shower

$$\begin{split} \langle \mathcal{O} \rangle &= \int d\Phi_0 B_0 \mathcal{F}_0(\mu_Q^2, \mathcal{O}) \\ &= \int d\Phi_0 B_0 \Pi_0(t_c, \mu_Q^2) \mathcal{O}(\Phi_0) + \int_{t_c} d\Phi_1 B_0 K_0 \Pi_0(t, \mu_Q^2) \mathcal{F}_1(t, \mathcal{O}) \\ &= \int d\Phi_0 B_0 \mathcal{O}(\Phi_0) - \int_{t_c} d\Phi_1 B_0 K_0 \Pi_0(t, \mu_Q^2) \mathcal{O}(\Phi_0) \\ &+ \int_{t_c} d\Phi_1 B_0 K_0 \Pi_0(t, \mu_Q^2) \mathcal{F}_1(t, \mathcal{O}) \end{split}$$

Unitary METPS Merging

@ To implement NLO matching

- \bullet use actual matrix element for the first emission $B_0K_0 \rightarrow w_1B_1$
 - "w" adjusts the renormalization and factorization scale of the real radiation matrix element to match parton shower

 $w_{1} = \frac{\alpha_{S}(t)}{\alpha_{S}(\mu_{R}^{2})} \frac{f_{a}(x_{a}, t)}{f_{a}(x_{a}, \mu_{F}^{2})} \frac{\overline{f_{b}(x_{b}, t)}}{f_{b}(x_{b}, \mu_{F}^{2})}$

add virtual correction to the zero bin by using jet-vetoed NLO cross section

$$B_0 \to \bar{B}_0^{t_c} = \bar{B}_0 - \int_{t_c} d\Phi_1 B_1$$

Unitary METPS Merging

$$\begin{split} \langle O \rangle = & \left\{ \int \mathrm{d} \Phi_0 \, \bar{\mathrm{B}}_0^{t_c} + \int_{t_c} \mathrm{d} \Phi_1 \left[1 - \Pi_0(t_1, \mu_Q^2) \, w_1 \right] \mathrm{B}_1 \right\} O(\Phi_0) \\ & + \int_{t_c} \mathrm{d} \Phi_1 \, \Pi_0(t_1, \mu_Q^2) \, w_1 \, \mathrm{B}_1 \, \mathcal{F}_1(t_1, O) \end{split}$$

- Easy to implement using truncated shower
- Extension to NNLO
 - Use standard MC@NLO for the first two emission
 - subtlety arises in mapping two-emission events to zero bin since parton shower always yields ordered emission while actual matrix element does not, leaving subleading logarithms of the cutoff not fully resummed: minimum impact given a reasonable cut-off
 - Promote vetoed cross section to NNLO

Final Formula

$$\begin{split} \langle O \rangle &= \int \mathrm{d} \Phi_0 \, \bar{\mathbb{B}}_0^{t_c} \, O(\Phi_0) \\ &+ \int_{t_c} \mathrm{d} \Phi_1 \left[1 - \Pi_0(t_1, \mu_Q^2) \left(w_1 + w_1^{(1)} + \Pi_0^{(1)}(t_1, \mu_Q^2) \right) \right] \mathbb{B}_1 \, O(\Phi_0) \\ &+ \int_{t_c} \mathrm{d} \Phi_1 \, \Pi_0(t_1, \mu_Q^2) \left(w_1 + w_1^{(1)} + \Pi_0^{(1)}(t_1, \mu_Q^2) \right) \mathbb{B}_1 \, \bar{\mathcal{F}}_1(t_1, O) \\ &+ \int_{t_c} \mathrm{d} \Phi_1 \left[1 - \Pi_0(t_1, \mu_Q^2) \right] \tilde{\mathbb{B}}_1^{\mathrm{R}} \, O(\Phi_0) + \int_{t_c} \mathrm{d} \Phi_1 \Pi_0(t_1, \mu_Q^2) \, \tilde{\mathbb{B}}_1^{\mathrm{R}} \, \bar{\mathcal{F}}_1(t_1, O) \\ &+ \int_{t_c} \mathrm{d} \Phi_2 \left[1 - \Pi_0(t_1, \mu_Q^2) \right] \mathbb{H}_1^{\mathrm{R}} \, O(\Phi_0) + \int_{t_c} \mathrm{d} \Phi_2 \, \Pi_0(t_1, \mu_Q^2) \, \mathbb{H}_1^{\mathrm{R}} \, \mathcal{F}_2(t_2, O) \\ &+ \int_{t_c} \mathrm{d} \Phi_2 \, \mathbb{H}_1^{\mathrm{E}} \, \mathcal{F}_2(t_2, O) \end{split}$$

- Tree Level amplitude and subtraction from Amegic or Comix [Krauss,Kuhn,Soff] hep-ph/0109036, [Gleisberg,Krauss] arXiv:0709.2881, [Gleisberg,Hoeche] arXiv:0808.3674
- One loop virtual matrix element from Blackhat [Berger et al.] arXiv:0803.4180, [Berger et al.] arXiv:0907.1984 arXiv:1004.1659 arXiv:1009.2338
- NNLO vetoed cross section using recent SCET results [Becher, Neubert] arXiv:1007.4005, [Gehrmann, Luebbert, Yang] arXiv:1209.0682 arXiv:1403.6451 arXiv:1401.1222
- · Parton shower based on Catani-Seymour dipole

Combined in Sherpa event generation framework

[Gleisberg et al.] hep-ph/0311263 arXiv:0811.4622

[Schumann, Krauss] arXiv:0709.1027

Hoeche, Prestel, YL arXiv:1405.3607

Comparison with S-MC@NLO Good agreement with S-MC@NLO at Low W pT W+1 jet K factor at high W pT

Hoeche, Prestel, YL arXiv:1405.3607

 Generic setting of sherpa used, no tuning of the shower performed

Comparison with experimental data

Inclusive Jet Multiplicity

 Excellent
 agreement in the zero jet bin with
 reduced scale
 uncertainty

Easily merge
 with NLO results
 of processes
 with higher jet
 multiplicities

Impact of PDFs

Impact of PDFs

Impact PDF-S

S-MC@NLO with NLO PDFs

S-MC@NLO with NNLO PDFs

 \tilde{r} -4 -3 -2 -1 0 1 2 3 4 \tilde{r} 0 20 40 60 80 100 120 140 160 180 200 $p_{T,H}$ [GeV]

Hoeche, Prestel, YL arXiv:1407.xxxx

Based on an independent implementation of gluon
 fusion process at NNLO: verified with HNNLO

Oullook

First practical implementation of NNLO+PS for DY processes

- Matching scheme can be easily applied to a variety of processes
- Any NNLO code can be used in the matching by providing a jet vetoed cross section in the interface
- Event generation at both NNLO and NNLO+PS and interface with analysis tools such as Rivet available, thanks to the Sherpa framework
 - @ Released as part of Sherpa soon
- Interesting phenomenology (NLO vs NNLO PDFs), may hint towards usefulness of NNLO PDFs for parton shower
- PS improvement desired for better overall accuracy