

Inclusive DY LHCb Report

Simone Bifani

University of Birmingham (UK)

on behalf of the LHCb collaboration

EW Precision Physics at the LHC, 30th June 2014

>Analysis Status

>Topics for Discussion

> LHCb EW shopping list

- »W-> $\mu\nu$ (2011): to be published in the next few weeks »W-> $e\nu$ (2011): ongoing »W-> $\tau\nu$ (2011): ongoing
- »Z-> $\mu\mu$ (2011): LHCb-CONF-2013-007, working on publication »Z->ee (2011): LHCb-PAPER-2012-036 »Z-> $\tau\tau$ (2011): LHCb-PAPER-2012-029
- »Low mass Drell-Yan (2010): LHCb-CONF-2012-013, 2011 ongoing
- »A_{FB} (2011): ongoing

> Update with the 2012 data ongoing for most of the analyses

- > Measurements performed in the forward region (2.0 < η < 4.5) for muons with p_{T} > 20 GeV/c
- > Fit the positive and negative muon p_T spectra in data to expected shapes for signal (ResBos) and backgrounds (data, PYTHIA and ResBos) in 8 η bins
- > All efficiencies determined from data and cross-checked with simulation
- > FSR correction evaluated using PHOTOS interfaced to PYTHIA

Results in general agreement with NNLO predictions (FEWZ)
 » PDF uncertainty at 68%

» Scale uncertainties varied by factors of two around the boson mass

- > Efficiency uncertainties limited by statistics
- > Template shape uncertainty limited by the knowledge of the signal \textbf{p}_{T} spectrum

Source	$\Delta \sigma_{W^+ \rightarrow \mu^+ \nu}$ [%]	$\Delta \sigma_{W^- \to \mu^- \overline{ u}}$ [%]	ΔR_W [%]	
Template shape	0.24	0.40	0.60	
Template normalisation	0.08	0.09	0.03	
Reconstruction efficiency	1.21	1.20	0.12	
Selection efficiency	0.33	0.32	0.18	
Acceptance and FSR	0.17	0.12	0.21	
Luminosity	3.50	3.50	_	
		-	-	

- > Tested different generators (PYTHIA POWHEG, ResBos)
- > How to properly assess shape systematic?
- > How big is the effect of EWK corrections on the muon $p_{\rm T}$ shape
- > How to include them?

- > The muon p_T is sensitive to the W mass
- > W mass measurements generally use the lepton $p_{\rm T}$ and jet balancing to infer the missing energy and construct a pseudo-W-mass variable
- > In principle we can fit the $p_{\rm T}$ templates from MC having different W masses to the data
- > We need the muon $p_{\rm T}$ described theoretically as well as possible
- > Once we know how much to vary the simulation by, we can work out what our precision would be on the W mass

- Fiducial volume
 Masses down to 10 GeV/c²
 Rapidity bins (2.0 < y_{µµ} < 4.5)
- > FEWZ tested at NNLO for masses down to 10 GeV/c²
 > The uncertainty in the lowest mass bin (10.5-11 GeV/c²) is ~7%
 > Error up dominated by PDF (~6%)
 > Error down dominated by theory (~6%)

> Questions

» Are EWK corrections implemented in FEWZ the best estimates? » What is an appropriate way to determine an uncertainty?

- > Fiducial volume >> p_{T,u} > 20 GeV/c
 - » 2.0 < η_{μ} < 4.5 » 60 < $m_{\mu\mu}$ < 120 GeV/c²
- > Method
 - » Correct A_{FB} for **detector resolution** within fiducial region » Fit to generator templates generated with different sin² θ_w , which include QED, EWK and QCD higher order contributions, to extract a value for sin² θ_w in data.
- > Questions
 - »Are EWK corrections implemented in FEWZ and POWHEG-box the best estimates?
 - » What is an appropriate way to determine an uncertainty?
 - » Or should data be unfolded for EWK corrections using external code?