

The CT-PPS project

Nicolo Cartiglia (with R. Arcidiacono, A. Solano) INFN Torino

On behalf of the CMS and TOTEM Collaborations

N.Cartiglia

Table of Contents

- The CT-PPS Project and its Physics motivations
- Experimental Challenges
- Constraints on the Tracking Detector
- Vertexing and Tracking: expected performances

Detector concept

The **CMS-TOTEM Precision Proton Spectrometer** (CT-PPS) will allow precision proton measurements in the very forward regions on both sides of CMS during standard LHC running:

 Two stations for tracking detectors and two stations for timing detectors installed at ~210 m from the common CMS-TOTEM interaction point (IP5) on both sides of the central apparatus

- LHC magnets between IP5 and the detector stations used to bend out of the beam envelope protons that have lost a small fraction of their initial momentum in the interaction
 - \rightarrow fractional longitudinal momentum loss (§) between 2% and 10%

LHC lattice between IP5 and CT-PPS detector stations

Detector concept

The **CMS-TOTEM Precision Proton Spectrometer** (CT-PPS) will allow precision proton measurements in the very forward regions on both sides of CMS during standard LHC running:

 Two stations for tracking detectors and two stations for timing detectors installed at ~210 m from the common CMS-TOTEM interaction point (IP5) on both sides of the central apparatus

- LHC magnets between IP5 and the detector stations used to bend out of the beam envelope protons that have lost a small fraction of their initial momentum in the interaction
 - \rightarrow fractional longitudinal momentum loss (§) between 2% and 10%

A Memorandum of Understanding between CERN and the CMS and TOTEM Collaborations for a common physics program and detector development signed in December 2013

The TDR is ready and approved by the two Collaborations Now presented to the LHCC (next meeting on Sep. 23rd-25th) [CERN-LHCC-2014-021, CMS-TDR-13, TOTEM-TDR-003]

Project planning

The CT-PPS project includes an **exploratory phase** in 2015-2016 and a **production phase** until LHC LS2 (2018)

- Exploratory phase (2015-16)
 - Prove the ability to operate detectors close to the beamline at high luminosity
 - Show that CT-PPS does not prevent the stable operation of the LHC beams and does not affect significantly the luminosity performance of the machine.
 - In 2015:
 - Evaluate RPs in the 204-215 m region
 - Demonstrate the timing performance of the Quartic baseline
 - Use TOTEM silicon strip detectors at sustainable radiation intensity
 - Integrate the CT-PPS detectors into the CMS trigger/DAQ system.
 - In 2016:
 - Evaluate the MBP option
 - Upgrade the tracking to pixel detectors
 - Upgrade the timing detectors if required/possible

Data Production phase

- Aim at accumulating 100 fb⁻¹ of data before LHC LS2

In current plan: detectors housed in Roman Pot, developed by TOTEM In the exploratory phase of **2015-2016**:

- pursue the TOTEM+CMS physics program at low/medium luminosity
- commission RP insertions during high luminosity data taking

Experimental Challenges

• Ability to operate the detectors close to the beam (15-20 σ)

Need to sustain very high radiation levels. For 100 fb⁻¹:

- proton flux up to $5 \cdot 10^{15}$ cm⁻² in the **tracker detectors**
- $10^{12} n_{eq}/cm^2$ and 100 Gy in **photosensors** and **readout electronics**

• Ability to reject background from high PU environment $(\mu = 50)$, mainly inelastic events overlapping with SD protons from the same bunch crossing

> Use proton timing for primary vertex determination Exploit the kinematical constraints of CEP events

Position of scattered protons at 204m, for fixed (ξ ,t)

Detector requirements

- Measurement of scattered proton momentum: position and angle in tracking detectors, combined with the beam magnets
 - Position resolution of $10-30 \ \mu m$
 - Angular resolution much lower than beam angular spread
 - Slim edges on side facing the beam $\, \rightarrow \,$ dead region ${\sim}100 \, \mu m$
 - Tolerance to inhomogeneous irradiation
 - $\rightarrow \sim 2 \cdot 10^{15} \text{ n}_{eq}/\text{cm}^2 \text{ close to the beam (for 100 fb}^{-1})$

Measurement of CEP vertex: proton time on both sides of CMS in timing detectors

- Time resolution ~10 ps \rightarrow Vertex z-by-timing: ~2 mm
- Segmentation to cope with the high occupancy expected
- Edgeless (~ 200 µm)
- Radiation hard

Tracking detectors

Baseline: 3D silicon pixel detectors

Detector installation foreseen in 2016

- 16 x 24 mm² **3D silicon pixel sensors**
- 150(x) x 100(y) µm² pixel pattern same as CMS pixel detectors
- 6 PSI46dig readout chips (52x80 pixels each)

Redundancy of 6 detector planes per station

Same readout scheme as Phase-I upgrade of CMS Forward Pixel Tracker

3D sensors consist of an array of columnar electrodes

• Mature technology after 15 years of R&D and the construction of the ATLAS IBL

Interesting features w.r.t. planar sensors:

- Low depletion voltage (~10 V)
- Fast charge collection time
- Reduced charged trapping probability and therefore high radiation hardness
- Slim edges, with dead area of ~100-200 μ m or Active edges, with dead area reduced to a few μ m
- Spatial resolution comparable with planar detectors

3 different 3D sensor layout tested, by FBK, Sintef and CNM:

different in type of columns, sensor edge, electrode configuration

FBK 3D sensors

Preferred solution: FBK 3D

- Passing-through empty columns
- Slim edges (200 µm)
- Inter-electrode distance 62 μm
- Double-sided etching

New production on the way with:

- Double sided etching
- 100 µm slim edge on one side of the sensor

24 0.8x0.8 cm² Single pixel sensors (1E, 2E, 3E, 4E) [

6 1.6x1.6cm² Quad pixel sensors CMS (2E, 3E) []

3D sensors tests

Preliminary results of un-irradiated FBK 3D sensors read out by PSI46dig ROCs, tested at Fermilab with a 120 GeV proton beam

Efficiency > 99.5% already at 5° Spatial resolution for 2 pixel clusters : ~12 μm

Measurements with the same detectors, irradiated at fluences from $1 \cdot 10^{15}$ to $1 \cdot 10^{16}$ n_{eq}/cm², were just taken during the last two weeks at Fermilab.

Timing Detectors

Baseline: L-bar Quartic, Čerenkov detectors with sapphire and quartz radiators
Detector installation foreseen at the end 2015

Beam test results:

Time resolution: $\sigma(t)=33$

2+2 in-line modules: $\sigma(t)$ ~15 ps

Occupancy for µ=50 pileup High occupancy causes inefficiency due to overlapping hits (may reach ~40%)

Timing Detectors

R&D on solid state detectors as future alternative solutions Diamonds, LGADs, 3Ds

- Motivations:
 - solid state detectors may have fine segmentation reducing the channel occupancy
 - detectors are thin and light, reducing nuclear interactions and allowing a large number of layers N

 $\sigma(t) \sim 1/sqrt(N)$

- > state of the art for mip measurement: $s(t) \sim 100 \text{ ps}$
 - requires R&D to achieve $s(t) \sim 30$ ps per layer

Summary

- The joint CMS-TOTEM Proton Precision Spectrometer project will study Central Exclusive Production in p-p collisions, measuring the kinematic parameters of the scattered protons
- To cope with CT-PPS requirements and challenges, new radiation-hard, slim-edge timing and tracking detectors are under development
- Detector baseline: Čerenkov L-bar Quartic detectors for timing 3D silicon pixel detectors for tracking
- Detector R&D: Solid state timing detectors: Diamonds, Low Gain Avalanche Diodes, 3D sensors