

Soft QCD Measurements

Jan Fiete Grosse-Oetringhaus, CERN

27th International Symposium on Lepton Photon Interactions at High Energies 18.07.15

- QCD in the non-perturbative regime
 - Poorly understood theoretically
 - Phenomenology and MC tuning unavoidable
- Crucial to model backgrounds for measurements of rare probes (SM & BSM)
 - Precondition for precision measurements and discoveries

Today's Menu

- Cross-sections
- Charged-particle distributions
- Underlying event
- Multiple parton interactions
- Identified particles
- The ridge(s)

Tremendous amount of soft QCD results from LHC ! Links to public results pages: <u>ALICE ATLAS CMS LHCb LHCf TOTEM</u>

Cross sections

σ [mb]

- Total σ from $d\sigma_{el}/dt$ by optical theorem
 - ALFA (ATLAS) and TOTEM
- Sensitivity to inelastic σ by all exps
 - First measurement at 13 TeV !
- Diffractive σ
 - Definition experimentally tricky (high-mass diffraction w/o rapidity gap)
 - MC tuning best with rapidity gaps

Relevance for Cosmic-Ray Physics

T. Pierog, ISVHECRI 2014

Significant reduction of extrapolation uncertainty

Particle Multiplicities

- Elementary characterization of collisions
 - Charged primary particles (mostly hadrons)
 - First test of MCs, tunes and models

Primary particle definition

• Typical definition (@ LHC): $\tau > 0.3 \cdot 10^{-10}$ s (or $c\tau > 1$ cm)

→ Let's try not to deviate too much from each other in definitions (facilitates direct comparisons between experiments and with basic models)

Particle Multiplicities (2)

dN_{ch}/dŋ

- Pseudorapidity density dN_{ch}/dη
- Multiplicity distribution $P(N_{ch})$
- p_T distribution dN_{ch}/dp_T
- Average-p_T vs N_{ch}

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

EPJC

ALICE

 $\sqrt{s} = 0.9 \text{ TeV}$

ALICE pp INEL

UA5 pp INEL

ALICE pp NSD

UA5 pp NSD

13 TeV !

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

ERN

Forward Measurements

Measurements over large fraction of phase space available

LHC Experiments agree !

LPCC MB&UE WG

JHEP 1101:079,2011

Underlying Event

- Activity below hardest scattering
 - as a function of hard scale
 - perpendicular to scattering "transverse" vs. "towards" / "away"
- Typical observables

– Number density, Σp_T , σp_T

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

Underlying Event vs. MC

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

CERN

Multiple Parton Interactions

 Minimum-bias and underlying event distribution sensitive to MPI contribution

• Is there a more direct way to access MPI?

Minijets

- Study MPI by minijets (jets at low p_T)
 - Statistically by two-particle correlations
- Measure near-side and away-side yields above flat baseline
- Calculate uncorrelated seeds

$$\langle N_{uncorrelated seeds} \rangle = \frac{\langle N_{trig} \rangle}{\langle 1 + N_{assoc,NS} + N_{assoc,AS} \rangle}$$

 In MCs, proportional to number of MPIs → proxy for number of MPIs

JHEP 09 (2013) 049

Minijets (2)

 Azimuthal distributions provide significant model constraints

- Uncorrelated seeds (~ MPI) increase linearly with N_{ch}
- At large N_{ch}, limit of MPI? (i.e., larger multiplicity by fluctuation, not by additional MPI)

MPI by Double Parton Scattering

- Different way to address MPI is by (harder) observables addressing double parton scattering
- 2 b jets + 2 jets
 - Azimuthal angle ∆S between
 b dijet and other dijet
 sensitive to DPS contribution
- Exclusive signals
 - Double charm production (JHEP 06 (2012) 141)
 - Pair J/ψ production
 (PLB 707 (2012), 52)

Soft and hard observables to be considered for MPI modeling and tuning

Particle Abundances

- Spectra of π ,K,K*,p, ϕ , Λ , Λ^* , Λ_b , Ξ , Σ , Ω ,B measured at LHC
- Sensitive to fragmentation, strangeness, baryon number
 - Difficult to tune
 - At present no model which describes all species

Identified <p_>

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

Strangeness

Significantly more strangeness in data than in MCs → triggered reworking the color reconnection mechanism in Pythia

Underlying Event with PID

PRD88 (2013) 052001

CERN

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

Color Reconnection (CR)

- Pythia process changing color configuration before hadronisation
 - Reconfiguration based on $\lambda = \ln(s/m_0^2)$ measure
 - Minimize total string length
- Enables description of rise of <p_T> with N_{ch}
- Recently improved CR model* (Pythia8)
 - Creates junctions (baryons)

* details in EPS-HEP 2015 talk by J.R.Christiansen (\rightarrow LINK)

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

CR and Strangeness

- Junctions can create baryons, including strange baryons
 - Ratio of Λ over K much better described (Ξ/Λ still too low)
 - Multiplicity-dependent effects observed (as in data, attributed to collective effects in heavy-ion system)

The Ridge

- Tantalizing discovery of ridge structures in pp and p-Pb
 - Provoked lively discussion on collectivity in small systems

What is a ridge?

• An η -elongated structure in two-particle correlations

The Ridge in pp

_{int}

0.04

0.02

**ATLAS** Preliminary √s=13 TeV, L{int}≈14 nb⁻¹

Data 2015

ATLAS

CMS (7TeV)

1.0<p_{_{_{_{}}}}^{a,b}<2.0 GeV

100

2.0<|∆η|<5.0

З

N^{rec}_{ch}

 $2.0 < |\Delta \eta| < 5.0$

- Near-side ridge discovered in high-multiplicity pp 7 TeV
- At 13 TeV even more abundant
 - due to increase of $\langle N_{ch} \rangle$, $\langle p_T \rangle$, no cms evolution as a function of N_{ch} ,

p_T^{a,b} [GeV]

The Ridge in p-Pb

- Near-side and away-side ridge (with low multiplicity subtraction)
 - Characterize as Fourier coefficients v_n
- Higher-order correlation effect
 - $v_2{4} = v_2{6} = v_2{8}$
- Particle-species dependence

Ridge at Forward Rapidities

0.02

0.5

- Ridges have been confirmed at forward rapidities (up to η ~ ±4) and up to ten units of Δη
- p-going < Pb-going (10-16% difference)

arXiv:1506.08032

3.5

p_ (GeV/c)

2.5

2

1.5

3

Various other topics...

- Bose-Einstein correlations / femtoscopy
 ALICE: PLB739 (2014) 139 (pp, p-Pb, Pb-Pb), arXiv:1506.07884 (Pb-Pb), ATLAS:
 arXiv:1502.07947 (pp), CMS: PAS FSQ-13-002 (pp), PAS HIN-14-013 (pp, p-Pb, Pb-Pb)
- Mass difference between light nuclei and anti-nuclei
 - Improves by factor 2 constraints on CPT invariance (ALICE-PUBLIC-2015-002)

 m_A (GeV/ c^2)

- ATLAS-CONF-2015-030
- Double-differential J/ψ cross-section

Soft QCD Overview - Jan Fiete Grosse-Oetringhaus

³He-³He

d-d

Summary

• Run I @ LHC: tremendous legacy of soft QCD results

Charged-particle distributions, underlying event, ... well described by now Identified particles, in particular strangeness ... challenge models Multiple-parton interactions and color reconnection ... important processes

- First results from run II available
 - MC tunes well prepared, EPOS LHC impressively good
- Collective-like effects observed in high-multiplicity pp and p-Pb, reminiscent of soft heavy-ion physics
 - Plus success of EPOS LHC which includes hydrodynamic phase

Can we proof the similarity of soft physics in pp, p-Pb, Pb-Pb? Can we find a uniform description of soft part of pp, p-Pb and Pb-Pb collisions? Role of color reconnection / escaping / other processes "creating" collectivity?

There are very interesting times ahead for us with Run II

EPOS3

- Gribov-Regge multiple scattering
 - Pomeron = parton ladder
 - Saturation scale (a la CGC, $Q_s \sim N_{part} s^{\lambda}$)
- Core-corona separation
 - (High p_T) Strings in corona escape
 - Remainder forms core \rightarrow initial conditions for...
- ...viscous hydrodynamic expansion (η /s = 0.08)
- Statistical hadronization
- UrQMD hadronic cascade

Identical treatment for pp, pA, AA !

Hydrodynamic expansion in all systems !

arXiv:1312.1233