

QCD measurements at high P_T

Simon de Visscher (CERN)

Disclaimer

- ATLAS, CMS, DO, CDF, LHCb: a *lot* of jets- and V+jets-related results...
- This talk: only recent and/or representative studies.
 - No soft QCD discussed here (see next talk from J.F. Grosse-Oetrinhaus)
 - No Top result discussed here (see Top session on thrusday morning)
- For detailed public results:
 - CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP</u>
 - ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults</u>
 - CDF: <u>http://www-cdf.fnal.gov/physics/new/qcd/QCD.html</u>
 - D0: <u>http://www-d0.fnal.gov/Run2Physics/WWW/results.htm</u>
 - LHCb: <u>http://cds.cern.ch/collection/LHCb%20Papers?In=en</u>

Outline

- PDF, α_s , jets
- Data/MC comparisons for V+jets
 - V+jets
 - V+ HF jets
- Run II preliminaries

QCD at hadron collider

PDF, α_{s} , jets

PDF from >=2-jet cross-section

q-PDF from W+c and Aw

α_s(M_z) from TEEC/ATEEC

Experimental Uncertainty

Total Uncertainty PDG Total Uncertainty

ATLAS

TEEC:angles between all (energy-weighted) combinations of jets.

ATEEC: removes contribution from 2 jets events. What remains is dominated by gluon contribution $\Rightarrow \alpha s$

2.76 TeV (+ ratio to 8 TeV)

Additional measurement useful for PDF and α_s Ratio cancels partially the exp. uncertainties, no significant deviation from NLOJet prediction

Azimuthal (de)correlation and jet veto

Data/MC comparisons for V+jets

V, V+jets

Double differential cross section d²σ/dyd

- Why study the emission of a vector boson, with or without associated jets ?
 - Background for searches
 - Sensitivity to
 - soft physics description
 - merging techniques in soft/mid-scales
 - QCD/QED corrections at harder scales
- stress test of event generators/calculations
 - tree-level vs NLO vs NNLO
 - Madgraph_aMC@NLO, Powheg, Sherpa, BlackHat, MEPS@NLO, ALPGEN
 - Parton shower algos (+Tunes)
 - Pythia6 vs Pythia8 vs Herwig vs....
 - Merging schemes (scale dependencies,...)
 - KtMLM vs ShowerKt vs CKKW-L vs FxFx vs UMEPS vs UNLOPS vs...

Number of jets: W+jets @ 7 teV

Z+jets @ 8 TeV

Lepton-Photon 2015, Ljubljana

Z+jets @ 8 TeV

Lepton-Photon 2015, Lj.

Lepton-Photon 2015, Ljubljana

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.005<u>-</u> 100

100

 $d\sigma/dp_T^Z$ / $d\sigma/dp_T^\gamma$

Z+I, 2 b

Z+2b

ATLAS and CMS 7 TeV measurements: excess of data around ~0.5 CMS (except ALPGEN) Zbb @ 8 TeV: excess unseen with jet radius=0.5

W+I b/c

W+b/c, W+2b

Good agreement between data and MCFM

Good agreement MCFM

 $pp \rightarrow W(\mu v) + bbX$ production cross-section (pb)

LHC Run II preliminaries

LHC Run II first QCD results

Normalisation: data and MC are in a reasonable agreement Shape: very good agreement

LHC Run II first QCD results: W/Z

[ATLAS-CONF-2015-039]

LHC Run II first QCD results: V+jets

between data and MC!

[ATLAS-PHYS-PUB-2015-021]

CERN

Conclusion

- Run I has allowed to push forward our knowledge on QCD, on many fronts. Impacts on
 - PDF, α_s
 - Generator:
 - Leading Order vs Tree-Level vs Next-to-Leading Order
 - merging techniques: (Kt-)MLM, CKKW(-L), FxFx
 - Light and heavy flavour jets production
- With expected Run II statistics
 - PDF: higher x, ratio between diff. energies, exploitation of Z+jets,...
 - Probe more efficiently regions where QCD and EWK higher order correction becomes larger
 - Probe collinear production of heavy hadrons (D and B)
 - …

Backup

QCD at hadron collider

Discover a new signature at the LHC, can be...

«Easy» discovery case: data-driven estimation of the background. MC not absolutely needed for the signal

Much more complicated! Needs accurate prediction from simulation for both signal and background normalizations AND shapes

QCD plays a central role for *all* kinds predictions at hadron colliders. You need to make sure you have it well under control! True also for precision measurement (Top,...)

PDF importance

PDF from >=2-jet cross-section

Strong correlation in (x,Q) \Rightarrow good to constrain PDF

PDF from n-jet cross-section

HeraFitter package used to constraint the PDFs

- CMS Jet Pt data: input
- input compared with prediction from theory (NLOJet)
- PDF parameters chosen to fit the theory to the data

Impact on all PDF's is present, here at $Q^2=1.9$ GeV²

32

LHC Run II QCD preliminaries...

Z+2b

Z+>Ib: powheg does the best job, MG 4F and 5F (P6) show trends Z+2b: MG and PWG show the same trends

α_s from >2-jets cross-section Use jet Pt to extract $\alpha_s(Q)$. Fit on different eta ranges to extract $\alpha_s(M_Z)$

Dynamics of W, Z bosons: $d\sigma/dp_T$ [SMP-13-006]

No prediction matches the data, LO or NLO

PDF QCD scales stat

0.6

Data stat

10

10²

p^w_T [GeV]

Z/y+jets ratio

- Both Z and γ+jets are large background processes for many searches
 - Particularly relevant for the modeling of $Z \rightarrow vv+jets$ (SUSY) in MET+jets final state

• Exp. final state:

- > 2 lept + >=1 jet, Pt>20 GeV, $|\eta|$ <2.4, trigger match, M(II)∈[81,101] GeV
- γ + >=1 jet, Pt>100 GeV, $|\eta_{\gamma}|$ <1.4
- >= I jets: pt>30 GeV, |η|<2.4</p>
- DeltaR(photon, γ OR lepton)>0.5

Z+J/Psi

