Top Quark Properties

Andreas B. Meyer on behalf of ATLAS, CDF, CMS and D0

Top Quark Properties in Production and Decay

Top Quark Properties

Limits on Stop

 Stop pair production: reduced spin correlation, increased tt rate

PRL 114, 142001 (2015)

16000

14000

12000

10000

8000

6000

4000

2000

0

1.2

1.1

0.9

0.8

0

Events/0.1

arXiv:1506.08616

Ratio

Spin Correlations

- l+jets channel: require full tt event reconstruction
- CMS: Full matrix element method

Most precise result in *l*+jets channel to-date

DESY

6

Summary: Spin Correlations

tt Spin Correlation Measurements Summary Aug 2015 Standard Model f_{SM} ±(stat) ±(syst) **D0**, dilepton + e/μ +jets 0.85^{+0.29}_{-0.29} PRL 108 (2012) 032004, Vs=1.96 TeV, L_{int}=5.4 fb⁻¹ CMS, dilepton PRL 112 (2014) 182001, $1.02 \pm 0.10 \pm 0.22$ √s=7 TeV, L_{int}=5 fb⁻¹ ATLAS, e/u+jets $1.12 \pm 0.11 \pm 0.22$ PRD 90 (2014) 112016, √s=7 TeV, L_{int}=4.6 fb⁻¹ ATLAS, dilepton PRD 90 (2014) 112016. $1.19 \pm 0.09 \pm 0.18$ Vs=7 TeV, L_{int}=4.6 fb⁻¹ ATLAS, dilepton PRL 114 (2015) 142001, $1.20 \pm 0.05 \pm 0.13$ Vs=8 TeV, L_{int}=20.3 fb⁻¹ CMS, µ+jets CMS-PAS-TOP-13-015, $0.72 \pm 0.09 \pm 0.15$ √s=8 TeV, L_{int}=19.6 fb⁻¹ 0.2 0.6 0.8 1.2 0.4 1.4 1.6 SM Spin Correlation Fraction f

0

7

SM

Charge/FB-Asymmetry

LO: No asymmetry expected

DESY

- NLO: Interferences between qq diagrams
- Diluted at LHC due to large gg fraction and unknown quark direction

tree-level and box diagrams: positive asymmetry $q \rightarrow g \rightarrow \overline{t} + q \rightarrow g \rightarrow \overline{t} = \overline{t}$

ISR/FSR: negative asymmetry

Charge/FB-Asymmetry

PRD 90, 072011 (2014) NLO 0.6 NNLO CDF D0 0.4 0.2 $A_{\rm FB}$ 0 -0.2 m₊=173.3 GeV MSTW2008 pdf -0.4550 350 400 450 500 M_{++} [GeV]

Latest Tevatron vs. new NNLO D0: consistent, CDF: \sim 1.5 σ

Andreas B. Meyer

PRD 87, 092002 (2013)

Top Quark Properties

9

Summary: Charge/FB-Asymmetry

TOPLHCWG

LHC: Good agreement statistical uncertainties still large \rightarrow more data

015

Top Quark Properties

Top-Quark Polarisation

- Using lepton angular distributions relative to quantisation axis (here: beam basis)
- Matrix-Element technique for event kinematics

$$A_{\hat{n}}^{\ell^{\pm}} = \frac{N(\cos\theta^{\pm} > 0) - N(\cos\theta^{\pm} < 0)}{N(\cos\theta^{\pm} > 0) + N(\cos\theta^{\pm} < 0)}$$

$$\kappa P = \frac{1}{2} \left(\kappa^{+}P^{+} - \kappa^{-}P^{-} \right) = A^{\ell^{+}} - A^{\ell^{-}}$$

$$KP = \frac{1}{2} \left(\kappa^{+}P^{+} - \kappa^{-}P^{-} \right) = A^{\ell^{+}} - A^{\ell^{-}}$$

$$M_{14}^{2} = \frac{39}{205} \left(\frac{1}{2} + \frac{1$$

simultaneously with (anti-correlated) AFB

Top Quark Properties

LP2015, Ljubljana, 20 August 2015 12

.

Summary: W Helicity Fractions

Flavour Changing Neutral Currents

ACTA Phys. Pol. B 35 (2004)

SM: BR ~ 10⁻¹² ... 10⁻¹⁷ BSM: BR ~ 10⁻⁵ ... 10⁻⁹

New Physics could enhance FCNC couplings by many orders of magnitude

FCNC: $t \rightarrow (u,c)H$

ATLAS upper limits: $BR(t \rightarrow qH) < 0.79\%$ obs (0.51% exp)

CMS upper limits: $BR(t \rightarrow cH) < 0.47\%$ obs (0.71% exp) $BR(t \rightarrow uH) < 0.42\% \text{ obs } (0.65\% \text{ exp})$

18

Summary: FCNC

Exp.	\sqrt{s}	${\cal B}(t ightarrow u \gamma)$	${\cal B}(t o c \gamma)$	Reference			
CDF	1.96 TeV	$3.2 \cdot 10^{-2}$		PRL 80 (1998) 2525			
CMS	8 TeV	$1.6\cdot 10^{-4}$	$1.8\cdot 10^{-3}$	CMS TOP-14-003			
${\cal B}(t ightarrow uZ) $							
CDF	1.96 TeV	3.7 ·	10^{-2}	PRL 101 (2008) 192002			
DØ	1.96 TeV	$3.2 \cdot 10^{-2}$		PLB 701 (2011) 313			
ATLAS	7 TeV	$7.3 \cdot 10^{-3}$		JHEP 09 (2012) 139			
CMS	7 TeV	$5.1\cdot10^{-3}$	$1.1\cdot 10^{-1}$	CMS TOP-12-021			
CMS	7+8 TeV	$5 \cdot 10^{-4}$		PRL 112 (2014) 171802			
ATLAS	8 TeV	$7 \cdot 10^{-4}$		ATLAS TOPQ-2014-08			
		$\mathcal{B}(t ightarrow ug)$	$\mathcal{B}(t ightarrow cg)$				
CDF	1.96 TeV	$3.9\cdot10^{-4}$	$5.7 \cdot 10^{-3}$	PRL 102 (2009) 151801			
DØ	1.96 TeV	$2.0\cdot10^{-4}$	$3.9 \cdot 10^{-3}$	PLB 693 (2010) 81			
ATLAS	7 TeV	$5.7\cdot 10^{-5}$	$2.7\cdot 10^{-4}$	PLB 712 (2012) 351			
ATLAS	8 TeV	$3.1\cdot 10^{-5}$	$1.6\cdot 10^{-4}$	ATLAS CONF-2013-063			
CMS	7 TeV	$3.6\cdot10^{-4}$	$3.4\cdot10^{-3}$	CMS TOP-14-007			
ATLAS	8 TeV	$4 \cdot 10^{-5}$	$1.7\cdot 10^{-4}$	ATLAS TOPQ-2014-13			
$\mathcal{B}(t ightarrow uH) \mathcal{B}(t ightarrow cH)$							
ATLAS	7+8 TeV	$7.9 \cdot 10^{-3}$		JHEP 06 (2014) 008			
CMS	8 TeV		$5.6\cdot 10^{-3}$	PRD 90 (2014) 112013			
CMS	8 TeV	—	$9.3 \cdot 10^{-3}$	CMS TOP-13-017			
CMS	8 TeV	$4.2 \cdot 10^{-3}$	$4.7 \cdot 10^{-3}$	CMS TOP-14-019			

Getting close to BSM scenarios

PSY

PHOTON 2015

h ŝ

Top-Quark Mass

- Quark mass is scheme-dependent
 - Pole-mass: viewing top quark as a free parton
 - Other schemes, e.g. MS scheme give different values
- Difference between 'direct' MC mass and pole mass estimated to be O(1) GeV
- 'Direct' mass measurements
 - Reconstruct m_{top}(rec) and extract m_{top}(MC)
 - Experimentally most precise, limited by
- cerimentally most precise, limited by (Flavour-dependent) jet energy scale uncertainties
 - Final state modeling: hadronization, fragmentation, colour reconnection
- 'Alternative' mass measurements
 - Complementary (experimental or theoretical) uncertainties
 - Comparison/combination with 'direct' mass measurements can reduce uncertainties further

tt correct 600

350

Background

all jets

CMS Preliminary, 18.2 fb⁻¹, $\sqrt{s} = 8 \text{ TeV}$

CMS TOP-14-002

CMS Preliminary, 18.2 fb⁻¹, $\sqrt{s} = 8$ TeV

DESY

mtop(MC): CMS

all jets

- ^(2D) likelihood fit to extract m_{top} and light-quark jet energy scale from W-mass constraint
- b-jet energy scale cross checked using Z+b

CMS JME-13-001

CMS TOP-14-002

22

Top Quark Properties

mtop(MC): ATLAS

arXiv: 1503.05427

24

m_{top}(MC): CDF and D0

- Reconstruct two observables
 - m_{top}(reco): from full kinematic reconstruction
 - m_{lb}(alt): dampen dependence on jet-energy scale

Summary: m_{top}(MC)

TOPLHCWG

Mass from Single Top

- 'Alternative' mass measurements: different (experimental or theoretical) uncertainties
- Comparison/combination with 'direct' mass measurements can reduce uncertainties further

Different color reconnection process and different scale uncertainties

GeV

1000

500

m_{top}(MC): CMS

ℓ+jets

В

 Determine kinematic dependence of measurement: pin down those (non-)perturbative corrections that would lead to differences

g

- Select distributions with sensitivity to
 - Color reconnection
 - ISR/FSR
 - b-quark kinematics

		_				
Observable	$m_{ m t}^{ m 1D} \chi^2$	Ч			•	
$\Delta R_{q\overline{q}}$	2.87					
<i>p</i> T,t,had	0.89	12.03	3./0	4		
$ \eta_{t,had} $	5.56	1.22	1.14	3		
H_{T}^4	6.19	9.18	7.54	4		
$m_{t\bar{t}}$	2.16	4.69	4.22	5		
$p_{\mathrm{T,t\bar{t}}}$	1.02	1.22	1.33	4		
Jet multiplicity	4.24	0.10	1.16	2		
$p_{T,b,had}$	2.57	A 11			an an a	
$ \eta_{\rm b,had} $	1.15	Altogether 14 different distributions				
$\Delta R_{b\overline{b}}$	0.37	have been measured to ensure that models describe behaviour of data				
$p_{\mathrm{T,q,had}}^1$	4.04					
$\eta^1_{q,had}$	3.36					
$p_{T,W,had}$	1.59	u noughour phase space				
$ \eta_{W,had} $	1.41	1.09	1.35	3		
Total	37.43	60.94	37.15	47		

DESY

Pole Mass

S. Alioli et al EPJC 73 (2013) 2438

Precision limited in part by theoretical uncertainties

 tt+1jets distribution (NLO+PS) pole mass through threshold and cone effects

 $m_{pole} = 173.7 \pm 1.5_{stat} \pm 1.4_{syst} + 1.0 - 0.5_{theory} \text{ GeV}$

Precision limited more by statistical uncertainties

Andreas B. Meyer

Top Quark Properties

Summary: Pole Mass

Summary

Top quark physics: Key to QCD, electro-weak and New Physics

- Tevatron and LHC data provide complementary information
- A detailed picture of top quark properties has been established
- Experiments finishing Legacy publications (Tevatron and LHC Run-1)
- Run-II: 100 fb⁻¹ expect per experiment by 2018
 - 80 million tt events and 20 million single top events (>10 Hz at 10³⁴)
 - 80,000 tt+Z and t+Z events each
- Statistics → systematics and reach
 - Beat down systematics using statistics and combination of methods
 - Ultimate precision esp. for top mass (also through theory advances)
- Top as probe of New Physics
 - Direct and indirect searches
 - Couplings, FCNC, angular distributions

Run-II: expect further substantial progress in experiment and theory, and - hopefully - surprises

- ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
- CDF: <u>http://www-cdf.fnal.gov/physics/new/top/top.html</u>
- CMS: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html</u>
- D0: <u>http://www-d0.fnal.gov/Run2Physics/top/index.html</u>
- LHCb: <u>https://twiki.cern.ch/twiki/bin/view/LHCb/Top</u>

$R_{B} = BR (tWb) / BR (tWq), Width and V_{tb}$

34

DES

R_B Summary

Vtb Summary: LHC

ATLAS+CMS Preliminary	TOPLHCWG	May 2015
$\begin{split} \text{IV}_{tb} &= \sqrt{\frac{\sigma_{meas.}}{\sigma_{theo.}}} \text{ from single top quas} \\ \sigma_{theo} &: \text{NLO+NNLL MSTW2008nnlo} \\ \text{PRD83 (2011) 091503, PRD82 (2010) 054014} \\ \Delta\sigma_{theo} &: \text{scale} \oplus \text{PDF} \\ m_{top} &= 172.5 \text{ GeV} \end{split}$	urk production	 theoretical uncertainty total uncertainty IV_{tb}I ± (meas.) ± (theo.)
t-channel:	:	
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊷ •⊶	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	▶ →→●	$0.97 \pm 0.09 \pm 0.02$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)		1.020 ± 0.046 ± 0.017
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ ●→	0.979 ± 0.045 ± 0.016
CMS combined 7+8 TeV JHEP 06 (2014) 090		$0.998 \ \pm \ 0.038 \ \pm \ 0.016$
Wt production:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	••	$1.03 ^{+0.15}_{-0.18} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	•••••	$1.01 \substack{+ 0.16 \\ - 0.13 \ - 0.04} + 0.03$
ATLAS 8 TeV ATLAS-CONF-2013-100 (20.3 fb ⁻¹)		$1.10 \pm 0.12 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	• ••• ••••	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,2}	·	1.06 ± 0.11 ± 0.03
ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009		¹ including top-quark mass uncertainty ² including beam energy uncertainty
0.4 0.6 0.8	3 1 1.2 IV _{tb}	1.4 1.6

Top Quark Properties

Vacuum Stability

- Evolution of quartic coupling and Higgs potential depend on top mass through radiative corrections.
- Finding: for experimental values of Top and Higgs mass there is no immediate requirement for new physics.

