

CP Violation

Kenkichi Miyabayashi
(Nara Women's University, Japan)

XXVII International Symposium on Lepton
Photon Interactions at High Energies

2015 Aug. 20th

Outline

- Time-dependent CP violation at Υ(4S) and LHCb
- Mixing induced CP violation in B_d decays
 - $-\sin 2\phi_1 = \sin 2\beta$ measurement at LHCb
 - B_d → D_{CP} h⁰ BaBar+Belle joint analysis
 - $-B_d \rightarrow \rho^+ \rho^-$ time-dependent CPV at Belle
 - $-\phi_3=\gamma$
- Mixing induced CP violation in B_s decays
 - $-\phi_s$ determinations in pp colliding beam experiments
 - B_d \rightarrow J/ ψ π⁺π⁻ study at LHCb to constrain penguin
- Charm CP violation
- Summary

Time-dependent CPV at $\Upsilon(4S)$

In order to see CPV by interference between decay and mixing.

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f) - \Gamma(B^{0}(\Delta t) \to f)}{\Gamma(\overline{B}^{0}(\Delta t) \to f) + \Gamma(B^{0}(\Delta t) \to f)} = \mathcal{S}_{f} \sin(\Delta m_{d} \Delta t) + \mathcal{A}_{f} \cos(\Delta m_{d} \Delta t)$$
$$\mathcal{S}_{f} = \frac{2\Im(\lambda)}{|\lambda|^{2} + 1} \qquad \mathcal{A}_{f} = \frac{|\lambda|^{2} - 1}{|\lambda|^{2} + 1} \qquad \lambda = \frac{q}{p} \frac{\overline{A}(f)}{A(f)} \qquad -\mathcal{C}_{f} = \mathcal{A}_{f}$$

Time-dependent CPV at LHCb (B_d)

B_d case:

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to f) - \Gamma(B^{0}(t) \to f)}{\Gamma(\overline{B}^{0}(t) \to f) + \Gamma(B^{0}(t) \to f)} = \mathcal{S}_{f} \sin(\Delta m_{d} t) + \mathcal{A}_{f} \cos(\Delta m_{d} t)$$

For B_s, will revisit later.

Comparison

	Number of equiv. B _d	Flavor tagging	∆t or t resolution	Oscillation	comments
↑(4S), i.e.BaBar,Belle/Belle II	1 million/fb ⁻¹	$\varepsilon (1-2w)^2 = 30\%$	$500\sim600 \text{ fs}$ (~1/3× τ_B)	Coherent oscillation	
LHCb	1000~2000 million/fb ⁻¹	$\varepsilon (1-2w)^2 = 3\%$	50~60 fs	Incoherent oscillation	No tag side interference

ε: tagging efficiency, w: wrong tag fraction.

LHCb compensates lower flavor tagging effective efficiency with much larger b-hadron production rate, while better t resolution due to larger boost.

Careful treatment of Δt resolution at $\Upsilon(4S)$ is essential.

Unitarity triangle for B_d (and B[±])

Decay via $b \rightarrow c$ (tree) to set SM reference.

Decay via $b \rightarrow s$ (penguin) to hunt NP. If the SM leading term only,

$$S_f = -\eta_f \sin 2\phi_1 = -\eta_f \sin 2\beta \qquad A_f = 0$$

where η_f is CP eigenvalue.

In B→VV case, need to solve admixture by angular analysis.

$\beta = \phi_1$ determined by b—c decays

$\sin 2\beta = \sin 2\phi_1$ in J/ ψ K_S at LHCb

 $sin2\beta = sin2\varphi_1 = 0.731 \pm 0.035 \pm 0.020$ $C_f = -A_f = -0.038 \pm 0.032 \pm 0.005$ PRL115(2015)031601 LHCb's capability has been demonstrated.

Now it is a firm SM reference

$$sin(2\beta) \equiv sin(2\phi_1) \frac{HFAG}{Moriond 2015}$$
PRELIMINARY

How firm is it?

Leading: Tree
No complex phase
in decay amplitude

Sub-Leading: Penguin
In principle, New Physics
contribution might not be zero,
how it can be constrained?

10

Penguin free B decays, b→cud

Leading: Tree
No complex phase
in decay amplitude

Sub-Leading : also Tree V_{ub} has complex phase, but it is within the SM, to be under control.

When neutral D meson decays to CP eigenstates, suitable to get ϕ_1 = β , branching fraction is limiting factor.

To appear in PRL

$B_d \rightarrow D_{CP}h^0$

BaBar+Belle joint analysis

arXiv:1503.07089, to appear PRL

12

 $B^0 \rightarrow D^{(*)0}$ h⁰, h⁰=π⁰, η, ω $D^0 \rightarrow K^+K^-$, $K_S\pi^0$ and $K_S\omega$ N_{sig} = 508±31events(BaBar) + 757±44events(Belle) To appear in PRL

$B_d \rightarrow D_{CP}h^0$

BaBar+Belle joint analysis

arXiv:1503.07089, to appear PRL

First observation of CPV(5.4 σ)! $\sin 2\beta = \sin 2\phi_1 = 0.66 \pm 0.10 \pm 0.06$ $\rightarrow \delta \sin 2\phi_1 \sim 0.015$ @Belle II (50ab⁻¹) $C_f = -A_f = -0.02 \pm 0.07 \pm 0.03$

$\phi_2(=\alpha)$ determination

If tree only, S_f is directly connected to $\sin 2\phi_2$ and A_f =0. Interference with $b \rightarrow d$ penguin can be solved by isospin analysis.

Decay diagram (tree)

Decay diagram (penguin)

This summer, new Belle $B_d \rightarrow \rho^+ \rho^-$ result comes.

$B_d \rightarrow \rho^+ \rho^-$ with Belle full $\Upsilon(4S)$ data

Precision improvement w.r.t. previously published result is factor 2.

Increase of data, simultaneous extraction of observables and analysis optimization for high signal yield.

Just appeared in PLB

LHCb $B_d \rightarrow \rho^0 \rho^0$

PLB747(2015)468

$$\begin{split} &N_{sig}(B_d \!\!\to\!\! (\pi^+\pi^-)(\pi^+\pi^-)) \!\!=\!\! 634 \!\!\pm\!\! 28 \!\!\pm\!\! 8 \text{ events} \\ &Br(B_d \!\!\to\!\! \rho^0 \rho^0) \!\!=\!\! (0.94 \!\!\pm\!\! 0.17 \!\!\pm\!\! 0.09 \!\!\pm\!\! 0.06) \!\!\times\!\! 10^{\text{-}6} \\ &\to\!\! \text{the most precise to date.} \end{split}$$

 $f_1 = 0.745 + 0.048 / -0.058 \pm 0.034$

→consistent with BaBar, 2.3 σ away Belle.

Important input to constrain $\phi_2 = \alpha$.

The most updated $\phi_2 = \alpha$

GLW : $B^{\pm} \rightarrow D_{CP} K^{\pm}$

ADS: Asymmetry in

suppressed D decay

GGSZ : Dalitz in $D^0 \rightarrow K_S h^+ h^-$

New attempts to access $\phi_3=\gamma$ come out, $B^+\to D(h^+h^-\pi^0)h^+$ (PRD91(2015)112014) and $B^+\to Dh^+\pi^+\pi^-$ (arXiv:1505.07044), but No major change in $\phi_3=\gamma$ itself from last year.

Mixing induced CP violation in B_s

Another unitarity triangle. $\lambda = \sin \theta_c$, β_s is $O(\lambda^2) = O(10^{-2})$

$$\beta_{s} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$

$$\phi_{s} = -2\beta_{s} + \Delta\phi_{s}^{P} + \delta^{NP}$$

Mixing Penguin Possible & decay NP (Tree)

CKMfitter gives ϕ_s (SM, No Penguin) =-2 β_s =-0.0365+0.0013/-0.0012

Possible to extract ϕ_s by b \rightarrow ccs induced B_s decays to f_{CP}. ¹⁹

Time-dependent CPV at LHCb (B_s)

Oscillation is incoherent, time evolution from primary production point, not Δt but t.

Same side Tag (near the B_s to f) K for B_s

p

Opposite side Tag (the other B)

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_s{}^0(t) \to f) - \Gamma(B_s^0(t) \to f)}{\Gamma(\overline{B}_s{}^0(t) \to f) + \Gamma(B_s^0(t) \to f)} = \frac{S_f \sin(\Delta m_s t) + \mathcal{A}_f \cos(\Delta m_s t)}{\cosh(\Delta \Gamma t/2) + \mathcal{A}_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$

$$\Delta m_s = m_{\rm H} - m_{\rm L} \quad \Delta \Gamma = \Gamma_{\rm L} - \Gamma_{\rm H}$$

$$S_f = \frac{2\Im(\lambda)}{|\lambda|^2 + 1} \quad \mathcal{A}_f = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \quad \mathcal{A}_{\Delta \Gamma} = -\frac{2\Re(\lambda)}{1 + |\lambda|^2} \quad - C_f = \mathcal{A}_f$$

ϕ_s determination by $B_s \rightarrow J/\psi K^+K^-$

Angular analysis to disentangle polarization states

$$\begin{split} & \phi_s \text{=-0.058\pm0.049\pm0.006 rad} \\ & \Gamma_s \text{=-0.6603\pm0.0027\pm0.0015 ps}^{\text{-1}} \\ & \Delta \Gamma_s \text{=-0.0805\pm0.0091\pm0.0032 ps}^{\text{-1}} \end{split}$$

Recent situation for ϕ_s and $\Delta\Gamma$

 $B_s \rightarrow J/\psi \ K^+K^-(ATLAS, CMS, LHC_b), B_s \rightarrow J/\psi \pi^+\pi^-(LHCb)$ and $B_s \rightarrow D_s^+D_s^-(LHC_b)$ combined: $\phi_s = -0.034 \pm 0.033$ rad.

Role of b→ccd transition to constrain penguin

Leading: Tree
No complex phase
in decay amplitude

Sub-Leading : Penguin Even in SM, because of the complex phase in V_{td} , more sensitive to penguin contribution.

Employing plausible assumption based on flavor SU(3) symmetry, penguin in the b→ccs modes are constrained.

$$B_d \rightarrow J/\psi \ \pi^0 \rightarrow B_d \rightarrow J/\psi \ K^0$$

 $B_d \rightarrow J/\psi \ \rho^0, \ B_s \rightarrow J/\psi \ K^* \rightarrow B_s \rightarrow J/\psi \ \phi$

PRL95(2005)221804 PRD79(2009)014030 PRD79(2009)014005

LHCb study of $B_d \rightarrow J/\psi \pi^+\pi^-$

PLB742(2015)38

Resultant constraint

65% of the B⁰ \rightarrow J/ ψ $\pi^+\pi^-$ signal is J/ ψ ρ^0 .

B→VV : CP-even/odd admixture.

Mostly CP-even, CP-odd component is 20%.

 $2\beta_{\text{eff}}$ =2 ϕ_1^{eff} =41.7±9.6+2.8/-6.3° \to -1.05°< δ_P < 1.18° for ϕ_s

 $B_s \rightarrow J/\psi \ K^{*0}$ result released this summer.

(LHCb-PAPER-2015-034 in preparation)

Charm CP violation

Search for CP violation performed, but no asymmetry appears.

Future

Exciting and friendly competition ahead.

LHCb Run2 has started, Belle II physics run starts at 2018.

Around 2020, well-matched game is anticipated, even before, we try to be innovative to realize novel ideas.

Summary

- Mixing induced CP violation in B_d and B_s mesons require very precise discussion to settle firm SM reference.
 - Necessary step to hunt NP in penguin induced B decays.
 - Penguin free mode, B_d→D_{CP} h⁰ BaBar+Belle joint analysis
 - Exploit SU(3) relation to constrain penguin effects in ϕ_s (and ϕ_1 = β) determination(s).
 - Belle $B_d \rightarrow \rho^+ \rho^-$ br., f_L and CPV, LHC_b $B_d \rightarrow \rho^0 \rho^0$ br. and f_L come out, $\phi_2 = \alpha = 90.6 + 3.9/-1.1$ °
- LHCb Run2 has started, Belle II physics run starts 2018. Exciting competition ahead.

Acknowledgement

- JSPS grant-in-aid No.26220706 (Prof. Toru lijima in KMI, Nagoya Univ. as PI) for travel support.
- Profs. Yoshihide Sakai (KEK) and Tim Gershon (Univ. of Warwick) for fruitful discussions.

$\sin 2\phi_1$ in ($c\bar{c}$) K⁰ at Belle

$\sin 2\beta = \sin 2\phi_1$ in (\overline{cc}) K⁰ at BaBar

 $\sin 2\beta = \sin 2\phi_1 = 0.687 \pm 0.028 \pm 0.012$ $C_{fcp} = -A_{fCP} = 0.024 \pm 0.020 \pm 0.016$ PRD79,072009(2009)

In charmless decays

New physics search in loop; penguin decays

SM penguin; No complex phase in decay. New Physics in the loop; may have a different weak phase. CPV deviation from J/ψ K^0 is a signature of New Physics.

Several contributions are overlapping

- B⁰→K⁺K⁻K_S final state has several different paths.
- Resolve them by fitting the Dalitz distribution. Same approach is required for $B^0 \to \pi^+\pi^-K_S$.
- LHCb better to determine intermediate states composition?
 (though production rate gain lower in the modes with a K_S)

