Exploring the Universe with Neutrinos

Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

Why Neutrinos ?	1
Neutrino Telescopes	6
Hunting for Cosmic Neutrino Sources	9
Diffuse Neutrino Flux	13
Outlook	20

Investigating the Universe with electromagnetic radiation

Observations at different wavelengths

- Various new discoveries (pulsars)
- Better insight in (astro)physical processes
- Rather complete view on the large picture of the Universe

Credit NASA

Why Neutrinos ?

Observed jet signature (M87)

Processes in the jet

Credit C. Spiering

Acceleration in shock waves

Credit NASA

High-energy γ , nuclei and u

Lepton-Photon conference 2

The $E^{2.6}$ scaled Cosmic Ray flux

Spectral features (knee, ankle) *E* limits of cosmic accelerators ?
Onset of extra-galactic component ?
Do we observe the GZK cut-off ?
Sources ? (SNe, GRBs, AGN, ...)

Neutrino detection principle

Neutrino production mechanism

thermal, e	synchrotron, inverse Compton
10 ¹⁶ eV	+ 20% Ep
$p + \gamma \longrightarrow \Delta$	$\Lambda \longrightarrow \pi + n$
	l <mark>→</mark> μ ⁺ + ν _μ (400 TeV)
	$e^+ + v_e + \bar{v}_\mu$
	20% E _p
	→ π ⁰ + p
	γγ(1 PeV)

$n + \gamma \longrightarrow \Delta^0$	similar treatment
---------------------------------------	-------------------

• Δ prod. threshold : $E_{\gamma} \ge 10 \text{ eV}$ (UV photons)

- Waxmann-Bahcall (PRL 78 (1997) 2292) High-E p diffuse out of the shocks Observed CR \rightarrow lower limit on p flux Fraction of p used for ν production ?
- M. Ahlers et al. (APP 35 (2011) 87) Protons trapped, neutrons escape CR observations provide the n flux Direct relation CR $\leftrightarrow \nu$ flux
- Generic broken powerlaw ν spectrum $E^{-1}\epsilon_b^{-1}$ $(E < \epsilon_b)$ $\Phi_{\nu}(E) \sim E^{-2}$ $(\epsilon_b \leq E \leq 10\epsilon_b)$ $E^{-4}(10\epsilon_b)^2$ $(E > 10\epsilon_b)$ with $\epsilon_b \approx 1$ PeV (JCAP 0903 (2009) 020)
- * Let's search for high-E ν sources

Underwater Neutrino DetectorsLake Baikal (Russia) : Baikal-NT200Mediterranean : Antares

8 strings, 192 optical sensors Instrumented volume $\sim 10^{-4}~{\rm km}^3$

12 strings, 900 optical sensors Instrumented volume $\sim 0.03~{\rm km}^3$

The IceCube Neutrino Observatory at the South Pole

86 strings, 5160 optical sensors, instrumented volume $\sim 1~{
m km}^3$

The detection principle

No significant clustering found

IceCube 6-years skymap (~600'000 events) (S. Coenders, ICRC2015)

0.	0 0	.6 1	.2 1.	.8 2.	.4 3.	.0 3.	.6 4.	2 4	.8 5.	4 6.0
$-\log_{10}\mathrm{p}$										

Hot spot North : $\alpha = 16$ h 38m 24s $\delta = 63.6^{\circ}$ P-value $= 1.78 \cdot 10^{-6}$

Hot spot South : lpha= 20h 01m 36s $\delta=-33.2^\circ$ P-value = $1.82\cdot10^{-5}$

Randomised α data sets \rightarrow post-trial P-values : 0.35 (North) and 0.87 (South)

IceCube GRB prompt ν flux limit

GRBs not the (only) UHECR sources Or : ν prod. lower than expected Or : ν prod. outside prompt phase

IceCube search for GRB ν 's outside prompt phase (M. Casier et al. ICRC2015)

• Fixed time window around each GRB • Bkg : p(n|r, dt) =Poisson pdf Record μ arrival times \rightarrow Bkg : p(dt|r, n) =Erlang pdf Stack the GRB time windows

Example plot

Study μ arrival time profile

Promising for short (< 2 sec.) GRBs Long GRBs : Core collapse Short GRBs : Mergers (NS-NS/BH)

• Many point sources : diffuse u flux Expected flux $\sim E^{-2}$

(Fermi shock acceleration)

Observed in TeV photons

- CR primaries : flux $\sim E^{-2.7}$
 - \rightarrow Calculate atm. ν *E*-spectrum
- ν det. observe atm. ν spectrum Validate calculated spectrum
- * PDF for atm. ν *E*-spectrum
- Very high E : Nearly atm. bkg free
 0.1 atm. ν km⁻³ year⁻¹ at 1 PeV
 VHE events might prove cosmic ν

IceCube atmospheric ν spectrum

IceCube observed 54 High-Energy Starting Events (HESE) (С. Коррег, ICRC2015) 39 Showers 15 Tracks

Evidence (6.5σ) for cosmic high-energy neutrinos

Energy spectrum not a single power law ? Where are the multi-PeV events ?

Diffuse Neutrino Flux

Recent IceCube observation of a very energetic through-going muon lpha : 7h 21m 22s δ : 11.5° (L. Rädel, ICRC2015)

Deposited energy $2.6 \pm 0.3 \text{ PeV} \rightarrow E_{\mu} = 4 - 5 \text{ PeV} \rightarrow E_{\nu} > 5 \text{ PeV}$

Source directions of the HESE events

No evidence for point source(s)

- Need more statistics
- Better resolution on showers helps

Lower *E* tracks in the North ?

Antares follow up study (A&A 576 (2015) L8)

- TANAMI : Blazars 3@IC14 3@IC20
- Antares performed a track analysis
- * No events observed at IC20
- * 2 events at IC14 (from 2 Blazars)

Compatible with $bkg \rightarrow set limits$

Max. # of IC events per Blazar

No (dis)proof of Blazar origin

Diffuse Neutrino Flux

Tue 09-aug-2011 07:23:18 UTC

Tue 03-jan-2012 03:34:01 UTC

1.04 ± 0.14 PeV (IceCube HESE event no. 14)

 1.14 ± 0.14 PeV (IceCube HESE event no. 20)

IceCube Northern (=upgoing) diffuse μ analysis (arXiv:1507.04005)

Evidence ($\sim 4\sigma$) for an astrophysical component

Search for ν -UHECR correlations (G. Golup, ICRC2015)

- IceCube-Auger-TA combined effort
- Cross correlation analysis

IceCube cosmic ν candidates (39 cascades, 16 tracks)

10 years of Auger data (231 UHECR)

6 years of TA data (87 UHECR)

- Neutrinos \equiv source directions
- Ang. separation of $\nu-\text{UHECR}$ pairs
- Look for excess w.r.t. isotropic distr.

 $[N_{pair}(lpha)/ < N_{pair}^{iso}(lpha) >] - 1$

- Most significant deviations
 - Tracks : 2° P-value=0.34

Cascades : 22° **P-value=** $5 \cdot 10^{-4}$

- Neutrino telescopes are providing high quality data
- IceCube has started to yield ground breaking results

We have witnessed the birth of Neutrino Astronomy

High-energy cosmic neutrinos observed for the first time in history No sources could be identified yet

• Observations guide us towards detector upgrades

Clear advantage to have complementary detectors at both hemispheres More cosmic neutrino data needed \rightarrow Larger detector volume

- Extension of IceCube ($\sim 10~{\rm km^3}$) foreseen (IceCube-Gen2)
- Gigaton Volume Detector ($\sim 1.5~{
 m km}^3$) under construction in Lake Baikal
- KM3Net planned in the Mediterranean ($\sim 1~{
 m km^3}$)
- Going to the highest energies → GZK neutrinos
 Proof to establish the GZK effect or "just" max. *E* of cosmic accelerators
 Extremely low flux → New techniques needed (Radio detection)

Radio detection in ice

- Long (\sim 1 km) attenuation length Cover large (>100 km²) area
- Detect events $> 10^{17} \text{ eV}$

Askaryan Radio Array (ARA) (South Pole, next to IceCube) Arianna detector (Ross Ice Shelf)

• GZK ν : Proof of GZK effect

or : Insight in UHECR composition

- Radar reflections from shower plasma
- * This is a new idea

Works also at energies below 10^{17} eV

Fill *E* gap between IceCube and ARA

arXiv:1412.5106

The GZK neutrino landscape

The \sim 20 cluster Gigaton Volume Detector (GVD) in Lake Baikal (S. Bair, ICRC2015) The first cluster is completed in April 2015

- 192 OMs at 8 strings
 - 24 OMs per string with 15 m spacing
 - depth 950 1300 m
 - 40 m between strings (60 m projected)
- Cluster DAQ center (30 m below surface)
 - Trigger, power, data transfer systems of the cluster
- Electro-optical cable to shore
- Acoustic positioning system (4 beacons on each string)
- Calibration light beacon (LEDs)
 - Interstring time calibration

The IceCube-Gen2 detector extension

The KM3Net project

Also radio components foreseen

Multi-PMT optical module concept

Backup slides

IceCube search for a diffuse Very High-Energy (VHE) neutrino flux

• Use event start veto criteria \rightarrow remove atm. bkg μ and ν (showers) Guarantees (contained) ν events and allows reduced E cut $\rightarrow 4\pi$

