

CMS Results from Run 2

Luca Malgeri on behalf of the CMS Collaboration

LP2015: XXVII International Symposium on Lepton Photon Interactions at High Energies 17-22 Aug 2015, Ljubljana (Slovenia)

Thanks to the LHC team!

No results shown here would have been possible without their work!

- Where we started from
- Preparation for Run2
 - changes/improvements
 - pre-beam commissioning
- First collisions
 - Commissioning of physics objects
- First Physics results @I3TeV
 - di-jet bump search analysis
 - particle multiplicity results
 - top pair cross section
- Outlook

415 publication on collisions data submitted

+23 performance papers based on cosmics data taking

And several more precision physics results still to come (SM,Top, B physics)

PRD 89 (2014) 092007, EPJC 74 (2014) 3076, EPJC 75 (2015) 212

Run I legacy: SM cross sections

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

All NP searches were unfortunately null

L. Malgeri - LP2015 - CMS Run2 Results

SuSy

gluino

several

limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

All NP searches were unfortunately null

CERN

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined</u> All NP searches were unfortunately null

Run 2 physics guiding principle

The cross section boost @13 TeV enhances the discovery potential for massive objects by several factors \rightarrow first 100's pb⁻¹ might be a discovery dataset.

Several recovery campaigns have re-established an almost perfect status. →Please note that the scale starts at 90%!

Active Detector Fraction Run 1 to Run 2

Fraction (%)

- Started beginning of June
- ramp-up @50ns bunch separation (collected up to 100pb⁻¹)
- first period @25ns bunch separation (just started)
- second period of lumi production @25ns with possibly reduced β*
- ~ I month of Heavy Ion running at the end of the year

Magnet cryogenics issues

- The restart of the CMS magnet after LSI was more complicated than anticipated due to problems with the cryogenic system in providing liquid Helium.
- Inefficiencies of the oil separation system of the compressors for the warm Helium required several interventions and delayed the start of routine operation of the cryogenic system.
- The data delivered during the first two weeks of LHC recommissioning with beams at low luminosity have been collected with B=0

- Currently the magnet can be operated, but the continuous up-time is still limited by the performance of the cryogenic system requiring more frequent maintenance than usual.
- A comprehensive program to re-establish its nominal performance is underway. These recovery activities for the cryogenic system will be synchronized with the accelerator schedule in order to run for adequately long periods.
- A consolidation and repair program is being organized for the next short technical stops and the long TS at the end of the year.

Physics Commissioning: alignment

Physics Commissioning: alignment

• 20M collisions tracks

- Run I geometry
- Initial geometry
- Aligned geometry

RMS of median of residuals[™] after alignment ranging from 3 to 10µm

3.8T collision data 2015

TID

10

median(x'_{pred} - x'_{hit})[μ m]

15

CMS Preliminarv

Alignment: cosmic rays+collisions

initial geometry at 0T

aligned tracker

Run I geometry

140**円**

120

100

80

60

40

20

-15

-10

-5

0

5

CMS-DP-2015-029/CDS:2041841

3.8T collision data 2015

CMS Preliminary

Nuclear Interaction with 13 TeV Data

Nuclear interaction (0 or I incoming tracks and ≥ 2 outgoing tracks) are used to build a "radiography". Known V0's and photon conversions are vetoed.

- The circle with radius around 2.25 cm corresponds to the beam pipe. This method allow to precisely measure its shift w.r.t. nominal position.
- The circle with radius around 3.7 cm corresponds to the Pixel Shield.
- The structure with radius around 4.2-4.7 cm corresponds to the 1st layer of the Pixel.

CMS-DP-2015-018/CDS:2037379

$\Phi(1020)$ from dedicated trigger path:

- opposite sign di-muon
- M_{inv}=0.85-1.2 GeV
- Signal PDF: double Gaussian with common mean
- Background PDF: Chebychev polynomial 2nd order

....then standard candles

CMS-DP-2015-018/CDS:2037379

$\Phi(1020)$ from dedicated trigger path:

- opposite sign di-muon
- M_{inv}=0.85-1.2 GeV
- Signal PDF: double Gaussian with common mean
- Background PDF: Chebychev polynomial 2nd order

J/ ψ from dedicated trigger path:

- opposite signe di-muon
- Minv=1.95-3.3 GeV
- Signal PDF: double Crystal Ball, common mean, n and α parameters
- Background PDF: Chebychev polynomial 2nd order

Spectroscopy with J/Y tag

Trigger selection:

- J/ψ mass constraint (150MeV window)
- _{PT}^μ > 4 GeV
- |η^μ| < 2.4
- p_T (J/ψ) > 8 GeV

Fitting method:2D (mass, proper time) mass and proper time projections shown here. Decaying exponential terms: $e^{-ct/\lambda} \otimes$ Gaussian background: prompt Gaussian + decaying exponential function 38 nb⁻¹(13 TeV)

PDG= 5.279 GeV

Signal: double Gaussian Combinatorial background: exponential J/ψ K+X: Gaussian

.....up to the Z.

CMS-DP-2015-015/CDS:2037372

Di-muon triggered events are compared with Drell-Yan MC simulations:

- at least two opposite-sign muons
- loose identification and isolation criterium
- *p*_T > 20 and 10 GeV, |η| < 2.4

L. Malgeri - LP2015 - CMS Run2 Results

CMS-DP-2015-018/CDS:2037379

CMS-DP-2015-013/CDS:2037370

trigger selection: double electron photon path $\rho_T > 10 \text{ GeV}, |\eta| < 2.5$

CMS-DP-2015-013/CDS:2037370

- All variables entering the electron id/MVA have been fully validated.
- Uncalibrated energy scale (from run1) already quite good.

➡Ready for physics.

Using a clean sample of $Z \rightarrow \mu \mu \gamma$:

Muon $P_T > 10$ GeV (20 GeV for farthest) Photon $P_T > 10$ GeV

- Isolated
- Hcal/Ecal < 0.05
- $\sigma_{i\eta i\eta} <$ 0.011 (0.031) for Barrel(Endcap) $\Delta R(\mu,\chi)^{min} <$ 0.8

CMS-DP-2015-016/CDS:2037373

Reconstruction of $Z \rightarrow \tau \tau$ in 13 TeV data

Visible mass distribution (left) and fully reconstructed mass using the SVFit algorithm (right) for leptonically and hadronically decaying taus at 13 TeV

```
Muons: pτ>18 GeV, η<2.1
Electrons: pτ>20 GeV η<2.1
Taus: pτ>20, η<2.3
```

SVFit description: JHEP05(2014)104

CERN

PF: standard Particle Flow reconstruction

PUPPI: Pile Up Per Particle Identification (<u>http://arxiv.org/abs/1407.6013</u>, CMS-PAS-JME-14-001)

- any particle flow candidate is weighted according to the surrounding activity
- the weights are optimized to discriminate particles from hard scattering vs particle from pile-up.

First Physics Analyses @I3TeV

A classical bump search on top of a falling spectrum.

- Test directly s-channel production of a heavy resonance.
- Expect better limits w.r.t. Run I already with few 100's pb⁻¹ for masses above 4 TeV.

Х

U,

q, g

q, **g**

q, g

CERN

2

CMS-DP-2015-017/CDS:2037378

Di-jet event selection:

- Jet I : $p_T > 60 \text{ GeV}$, $|\eta| < 2.5$
- Jet2: $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$
- |Δη_{jj}|<1.3

Geometrically close jets are combined into "wide jets", which are used to measure the dijet mass spectrum (M_{jj})

• M_{jj} > 1.1 TeV

$$\frac{d\sigma}{dm_{jj}} = \frac{p_0 \left(1 - \frac{m_{jj}}{13000}\right)^{p_1}}{\left(\frac{m_{jj}}{13000}\right)^{p_2 + p_3 \ln\left(\frac{m_{jj}}{13000}\right)}}$$

- Above 3.5 TeV
 - ⇒~4.6 background events are expected (from fit to data) and
 - →~0.8 events of signal from the considered q* model (4.5 TeV).
 - ➡4 events are observed in data.
- With the current integrated luminosity we expect to exceed the sensitivity of the 8 TeV analyses only for narrow resonances with masses greater than about 5 TeV.

Stay tuned.

CMS-DP-2015-017/CDS:2037378

L. Malgeri - LP2015 - CMS Run2 Results

Lumi section: 347 Dijet Mass: 5.0 TeV

Pseudorapidity distribution of charged hadrons in protonproton collisions at $\sqrt{s} = 13$ TeV

arXiv: <u>http://arxiv.org/abs/1507.05915</u> Submitted to PLB

The multiplicity measurement is a crucial measurement:

- the dependence of dN/dη on √s gives an handle on the relative weight of soft and hard scattering contribution.
- The soft scattering is modelled phenomenologically and hard to predict (nonperturbative QCD).
- A precise measurement is crucial to tune all theory/MC predictions at a new energy

The $dN_{ch}/d\eta$ was measured in CMS in a special early run @13 TeV taken on June 7th (~1h30'):

- 11.5M events with no magnetic field
- 0.2% 5% PU (separated beam)
- N_{ch} defined as:
 - all charged particles with $|\eta| < 2$
 - decay products with $c\tau < I cm$ included
 - secondary interactions excluded as well as prompt leptons

number of reconstructed tracks

The two analyses methods are fully consistent and are combined for the final results:

 $dN_{ch}/d\eta|_{|\eta|<0.5} = 5.49 \pm 0.01$ (stat) ± 0.17 (syst)

Mid-rapidity: EPOS LHC and PYTHIA8 CUETP8SI consistent with data. Rapidity dependence better described by EPOS LHC

Top pair cross section

Why:

- it is a fundamental measurement of the SM (any deviation is sign of NP)
- its understanding is crucial for almost all NP searches
- accessible already with few pb-I
- relatively low systematics in the dilepton channel

b

ATLAS inclusive result shown are EPS (ATLAS-CONF-2015-033) $\sigma_{tt}(13\text{TeV})=825 \pm 49 \text{ (stat)} \pm 60 \text{ (syst)} \pm 83 \text{ (lumi) pb}$

Integrated lumi= 42 pb⁻¹

• all validated data from 50ns run

Signal tt MC reference sample:

- PowhegV2+Pythia8, normalized to NNLO+NNLL
- Other tt samples for systematics: MG5_aMC@NLO(FxFx)+Pythia8, Powheg + Herwig++, PowhegV2+Pythia8 Scale Up (Down)

Selection

- At least 2 good (OS) leptons (1e and 1µ)
- pt(lept)> 20 GeV and |η|< 2.4
- If more than 2 good leptons, the two with highest pt are retained
- Di-lepton invariant mass > 20 GeV
- At least 2 jets (anti-kT R = 0.4)
- pt(jets)> 30 GeV and |η|< 2.4

CMS-PAS-TOP-15-003

- The invariant mass distribution between the two lepton is a place where NP might hide.
- The $\Delta\phi$ distribution explores the spin correlation in the top ant-top pair.

No statistically relevant deviation is observed

Systematics dominated by:

- Trigger efficiency:
 - affected by low stats in the monitoring trigger paths (3% stat. uncertainty)
- Lepton efficiency:
 - data driven based on standard tag and probe technique
 - fully dominated by data statistics
- Jet Energy Scale:
 - derived by propagating the current JES uncertainty (4%)
- Luminosity:
 - a preliminary calibration has been obtained from "mini" VdM scans, not optimized for a precision measurement
 - It is expected to go down substantially after a proper VdM scan foreseen for Aug 24th

Source	$\Delta \sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} (\%)$
Data statistics	60	7.7
Trigger efficiencies	39	5.0
Lepton efficiencies	33	4.3
Lepton energy scale	< 1	< 0.1
Jet energy scale	20	2.6
Jet energy resolution	< 1	≤ 0.1
Pileup	2.8	0.4
Scale (μ_F and μ_R)	1.5	0.2
t ī NLO generator	15	1.9
tt hadronization	14	1.8
PDF	12	1.5
Single top quark	14	1.8
VV	3.5	0.5
Drell–Yan	3.9	0.5
Non- W/Z leptons	8	1.0
Total systematic (no integrated luminosity)	62	8.0
Integrated luminosity	93	12
Total	126	16.4

inclusive $\sigma_{tt}(13\text{TeV})=772 \pm 60 \text{ (sta)} \pm 62 \text{ (sys)} \pm 93 \text{ (lum) pb}$

Results derived also in a fiducial volume: both leptons $p_T > 20$ GeV, $|\eta| < 2.4$ fiducial $\sigma_{tt} = 12.9 \pm 1.0(stat) \pm 1.1(syst) \pm 1.5(lumi)pb$

Since Aug 13th @ 01:11 UTC we are running with 25ns bunch spacing!

No time to have physics results to present here, but out-ofthe-box online data quality plots look encouraging!

L. Malgeri - LP2015 - CMS Run2 Results

Many changes/improvements during the long shutdown:

- detectors
- trigger/DAQ
- Offline/computing
- A fantastic work accomplished in time !

CMS is more than ready for first physics results:

- continuing a systematic commissioning of all physics objects
- dN/dη analysis (<u>submitted!</u>)
- top pair cross section (<u>first</u> preliminary result here!)
- di-jet resonance search (fully commissioned)

The search season is starting. Next to come:

- more SM xsec measurements
- di-jet and di-lepton resonances
- multijet, black holes
- di-photon

Expected to exceed Run I limits for massive NP even with few 100's pb⁻¹

BACKUP

For a complete set of results on Run2 please have a look at: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

Significant effort on algorithm improvements with emphasis on pile-up mitigation to cope with 25ns bunch separation.

- Improvement on track reconstruction
- Out of time PU mitigation in the calorimeters

•PU subtraction for all trigger objects Improved e/γ isolation and τ -trigger.

Preparation activities

High Level Trigger:

- Major improvements in the algorithms to cope with new conditions
- Including HLT specific OOT PU mitigation similar to offline

Offline and computing:

- Multithreading in simulation/reconstruction
- Rework of computing facilities (GRID and HLT) towards increased flexibility
- New Mini AOD format in production: compact high level data objects (30-50 kb/ event, i.e. /10 w.r.t. Run 1)

Physics Analyses:

• several MC challenges simulating current data taking and defining Early Analyses procedures and milestones.

Dijet: background and shape fit from a MC exercise Simulated data corresponding to Ifb⁻¹

Muon tracking efficiency improved in Run2, especially in high PU environment, due to additional tracking iterations:

- Outside-in iteration designed to recover the missing tracks in the tracker
- Inside-Out iteration designed to improve the hit-collection efficiency (looser requirements)

CMS Preliminary 7, 8, 13 TeV

