

Greek Teachers Programme 2014

Energy & Power Conversion

Konstantinos Papastergiou | Technology Department **CERN** – European Organisation for Nuclear Research

Summary

Energy consumption at CERN

- ⇒ How is energy spent?
- ⇒ Electricity, Water and Gas

From Electrical to Kinetic Energy

⇒ How is electricity converted to acceleration?

Key electrical consumers?

Components with power requirements

Electronics and Power Electronics

⇒ What is the difference

Power Conversion Principle

⇒ Why and how is energy converted

Accelerator Power Electronics

⇒ Real world systems – how do they look

Research Challenges

⇒ The future in powering accelerators

CERN και ενέργεια

Electricity at CERN

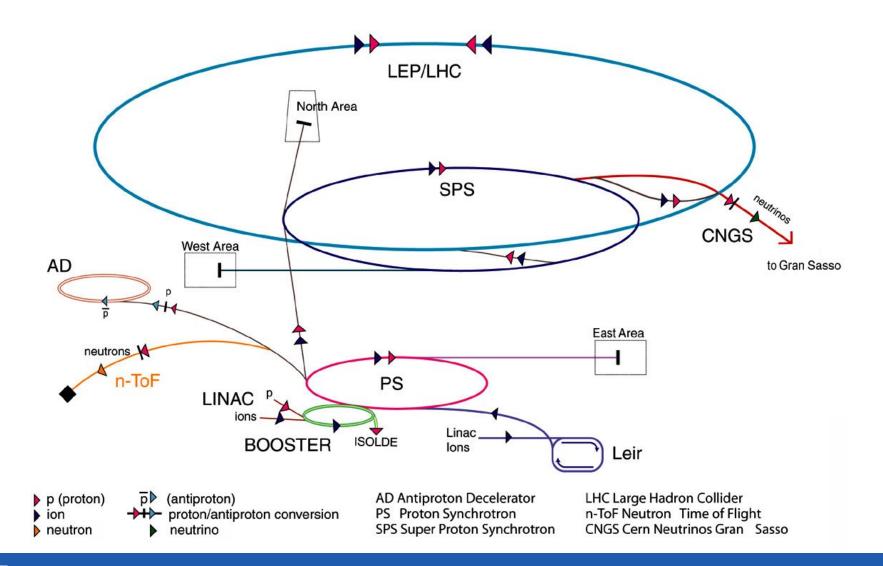
- Interconnections to both France and Switzerland
- Approximately 80% of electricity from France
 - ⇒ (nuclear mostly)
- Special contract terms with EDF and SIG
- 1000 high voltage circuit breakers in operation
- Consumption
 - ⇒ as high as all households in Geneva area
 - \Rightarrow 1/10th of the canton (11.3TWh).

Energy Facts & Figures

- Total consumption 1 000 000 kWh/yr
 - ⇒ 43% consumed by the LHC
 - Up to 14% by superconductive magnet cooling
 - Up to 9% equipment cooling and tunnel ventilation
 - ⇒ 11% by its Experiments
 - ⇒ 30% by SPS
 - 7% at its experiments
 - ⇒ 3% PS-booster-Linac
 - ⇒ 6% Data Centers
 - \Rightarrow 7% in offices, restaurants etc.

Water

- 6 million m3 of water
- Closed circuit of demineralised water and secondary circuit of raw water cooled in cooling towers.
- Industrial process water
 - ⇒ Surface treatment
 - Production of demineralised water


Natural Gas

- ➡ Heating stations at Meyrin 8 million m³
- ➡ Heating station at Prevessin 1.5million m³
- Operated by external companies
 - Monitor dust, CO, CO2, nitrogen oxides and sulphur oxides

η ενέργεια στους επιταχυντές

Accelerators at CERN

Key Energy Consumers

Direct Energy to the beam

- ⇒ RF cavities Klystron
- ⇒ Magnets

Environmental Conditioning

- ⇒ Cryogenics
- ⇒ Systems cooling
- ⇒ Tunnel air filtering

Data

- ⇒ Measurements
- ⇒ Processing
- Infrastructure
- Other

Force on a particle

The force on a charged particle is proportional to the charge, the electric field, and the cross product of the velocity vector and magnetic field:

Lorenz force:

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

Where q is the electrons (positrons, protons...) elementary charge:

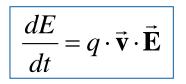
$$q = e_0 = 1.602 \cdot 10^{-19} [C]$$

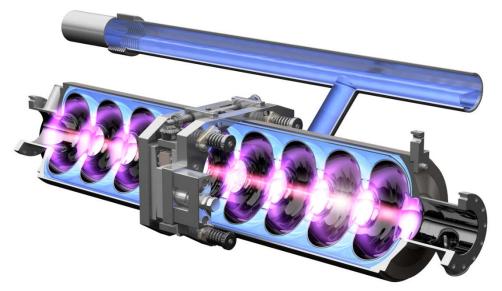
For conservative forces (work done independent of the path) the work done by a force F along the path s_1 -> s_2 transversed by the particle is:

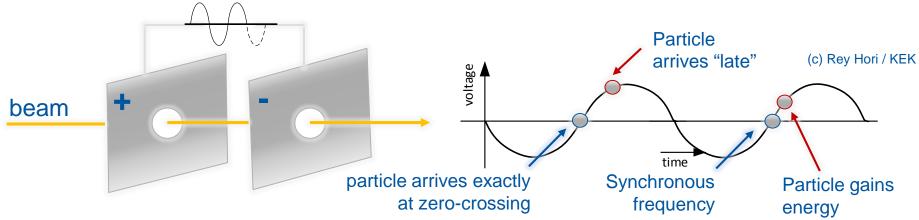
$$W = \int_{s_1}^{s_2} \vec{\mathbf{F}} \cdot \mathbf{d}\vec{\mathbf{s}}$$

by differentiating:

$$\frac{dE}{dt} = q \cdot (\vec{\mathbf{v}} \cdot \vec{\mathbf{E}} + \vec{\mathbf{v}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{B}})) = q \cdot \vec{\mathbf{v}} \cdot \vec{\mathbf{E}}$$

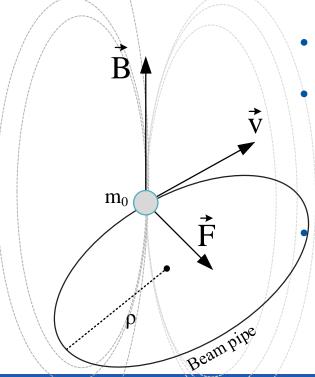

Conclusion the magnetic field does not produce any work on the direction of the vector s travelled by the charged particle. Energy (acceleration) is only gained under the effect of electric field.


RF Cavities - Klystron


Functions:

Particle acceleration

* The rythm with which particles energy builds up depends on its rotation speed



Electro-magnets

Functions:

Beam steering

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

- At first sight F is not dependent on mass
- Since v on a circle of radius ρ -> F = centripetal force

$$m_r = \gamma \cdot m_0$$

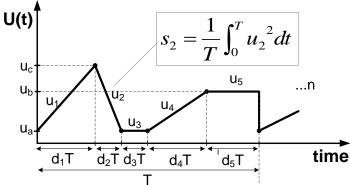
* γ : lorenz factor (γ =1/(1-v²/c²)

Rearanging yields the beam rigidity i.e. a measure of the force needed to bend the charge direction
And the bending angle inside a magnet field

$$\vec{B} \cdot \rho = \frac{\vec{m} \cdot \vec{v}}{q} = \frac{\vec{p}}{e} \qquad \qquad a = \frac{\int \vec{B} \cdot ds}{B \cdot \rho}$$

The integrated field is a magnet property also given by Amperes law:

$$\oint_C \vec{B} \cdot ds = \mu_0 \cdot \iint_A \vec{J} \cdot dA = \mu_0 \cdot I_C$$

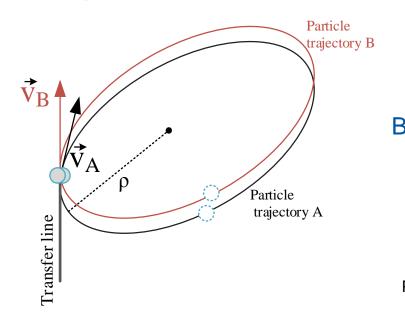

 $^{\ast}\mu_{0}\text{:}$ magnetic permeability of the air

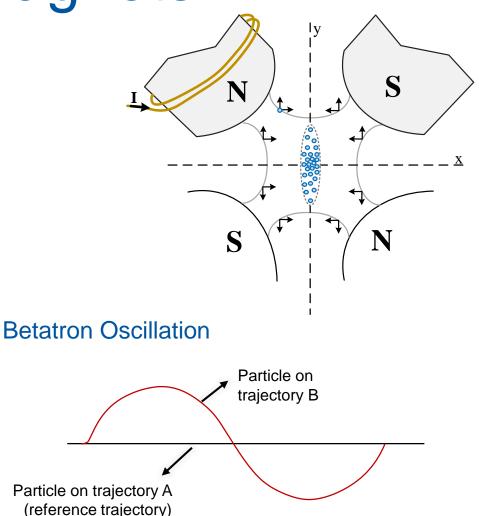
Dipole magnet

Functions:

- Beam steering
- Stores energy E=0.5 L I²
- Consumes power P=I² R

(c) Rey Hori / KEK




Quadrupole magnets

Functions:

Focussing-defocusing

Two particles enter in the accelerator with different velocity vectors:

Cryogenics

- Cryogenic pumps are the largest single electrical consumer at CERN
- Total power: 27.5MW
- 6 weeks to cool down
 Helium to 1.8K to 4.2K

1880s the war of currents

Thomas Edisson VS George Westinghouse

- Direct VS alternating current
- AC has two key advantages
 - ⇒ Voltage/current can be transformed
 - ⇒ Current can be interrupted
- Whereas DC is:
 - ⇒ Less dangerous* but
 - May not be interrupted with standard switches
 - ⇒ Could not be transmitted in long distances due to the lack of dc transformers

Westinghouse won the battle!!!

- ⇒ Alternating current is standard and can be transformed, transmitted to distances of several hundred kilometres and may be interrupted with standard mechanical breakers.
- ⇒ It took us a century to develop technology for handling DC currents!

f compared to a similar voltage level 50Hz alternating current of which the fluctuations can induce arrhythmia and eventually result in ventricular fibrillation of the heart

Edisson VS Westinghouse

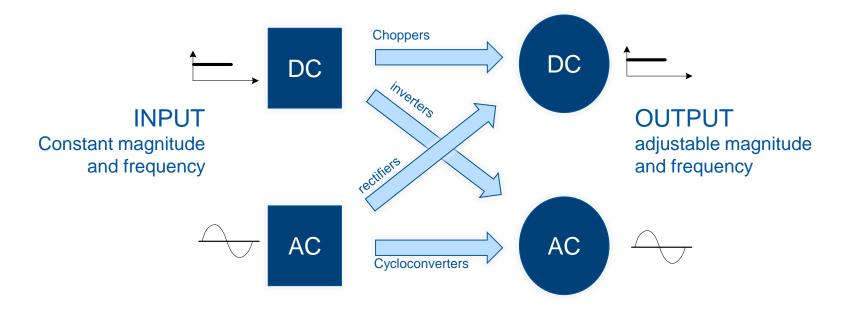
- Electrical power is P_{tot}=voltage (v) x current (i)
- Using conductors to transmit power hence R_{copper}
- Power is lost on the way $P_{loss} = I^2 R$
- ➡ Hence useful power is P_{useful}=P_{tot}-P_{loss}

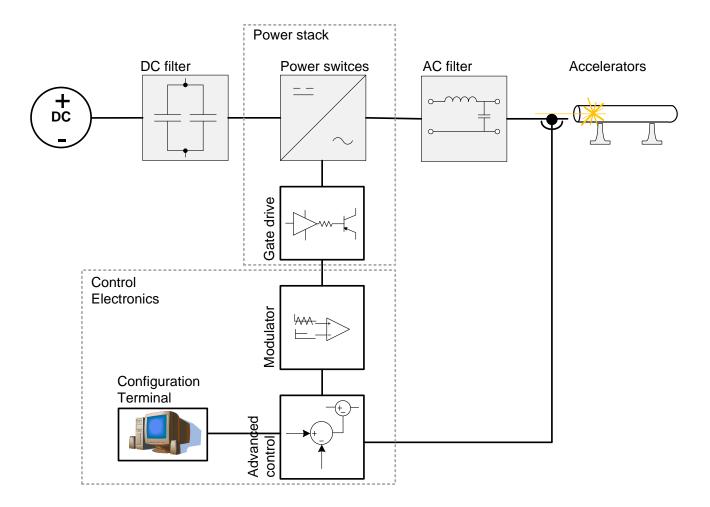
Notice! Ploss is a function of I and R. Decreasing I by a factor of 2 decreases power loss by 4

- 2 Solutions to save energy:
 - ⇒ Voltage rise -> voltage transformation
 - ⇒ resistance reduction-> superconductive conductors

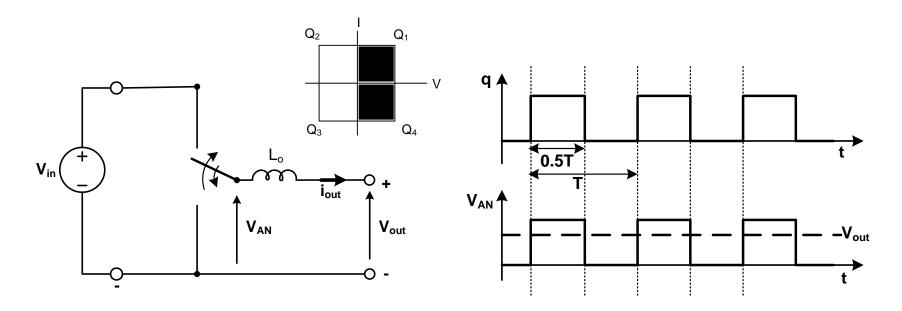
Εισαγωγή στους Μετατροπείς Ισχύος

Electronics & Power Electronics

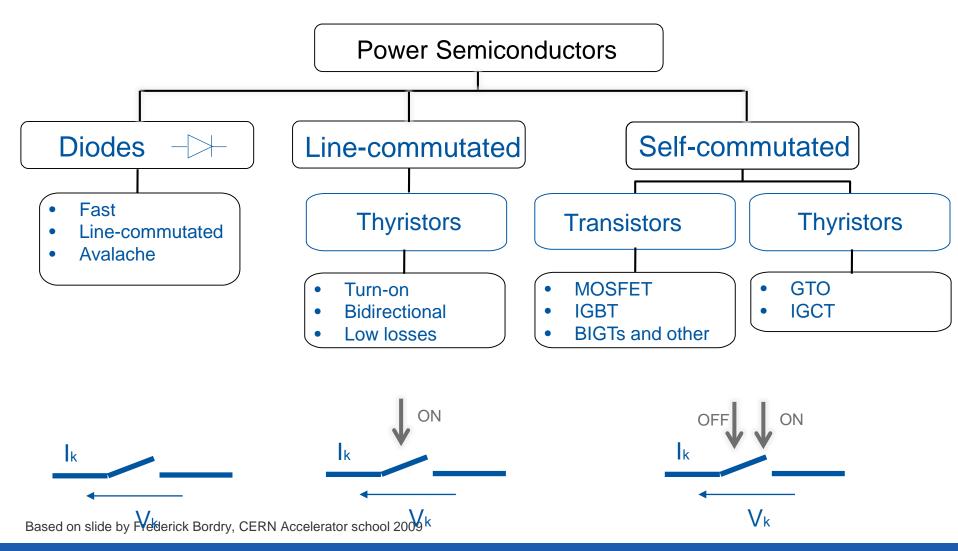

- Electronics is the art of manipulating the flow of electrons to perform certain functions
 - ⇒ Receive, transmit and store information
 - ⇒ Generate electromagnetic waves (heat,light)
 - ⇒ Convert electricity to kinetic energy (motors)


Power Conversion

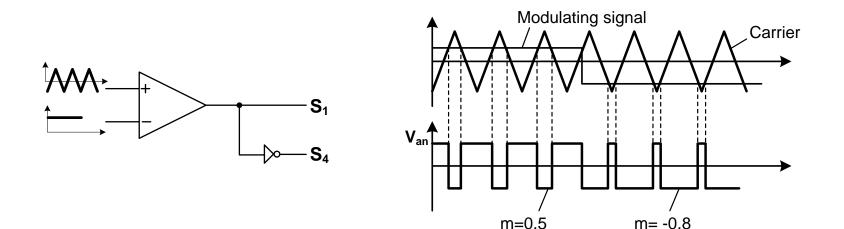
- Electrical voltage needs to be transformed
 - ⇒ From direct to alternating current and the opposite
 - ⇒ From one voltage to another
 - ⇒ From one frequency to another


Power Converter Structure

The basic power converter


- Voltage regulator operation based on switching on and off the input source with a duty cycle D.
- Inductor operates as averaging device

 $V_{out} = D.V_{in} \qquad 0 < D < 1$


Power Semiconductors

Modulation

 Control of the fundamental frequency component (ac or dc) by varying the switch duty ratio

Figures of merit in PE

Power conversion efficiency

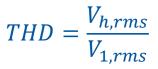
⇒ Expresses the effective-ness of a converter in converting input power to useful output power (with less wasted power in the process)

Input Power factor

A high power factor typically indicates a lower input current for delivering a certian output power level. (as usually input sources have a stiff voltage magnitude)

Ripple factor

⇒ Is a measure of the voltage or current ripple magnitude in dc voltage or current waveform


Total Harmonic Distortion (THD)

⇒ is a measure of its RMS power of the harmonic components in comparison with the RMS power of the fundamental component of a voltage or current waveform.

$$n_c = \frac{P_{out,dc}}{P_{in}}$$

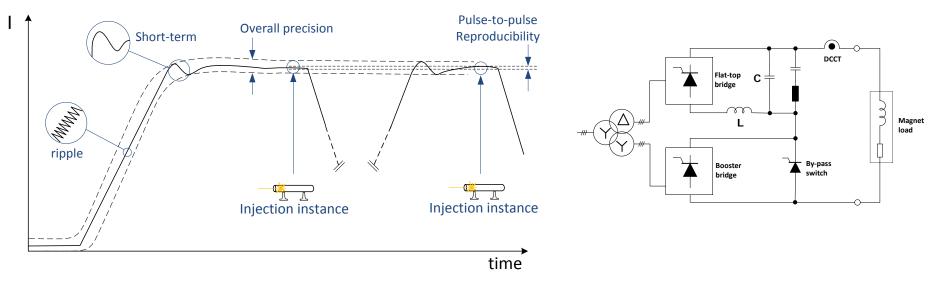
$$cos\varphi = \frac{P_{in}}{S_{in}}$$

 $RF = \frac{V_{ac,rms}}{V_{dc}}$

LHC – the Large Hadron collider

- The beams are controlled by:
 - 1232 SC Main Dipole magnets to bend the beams
 - 392 SC Main Quadrupole magnets to focus the beams
 - 124 SC Quadrupole / Dipole Insertion magnets
 - 6340 SC Corrector magnets
 - 112 Warm magnets

- (in 196 circuits of ~ 6 kA)
- (in 1460 circuits 60 to 600A)
- (in 38 circuits 600 to 900A)
- SC RF Cavities to accelerate and stabilize the beam


All ~8000 magnets need to be powered in a very controlled and precise manner

Current Regulation Precision

Current in a transfer line magnet

Precision components:

- Current ripple
- Short-term (dynamic behaviour)
- Long term (reproducibility)

Typical requirements:

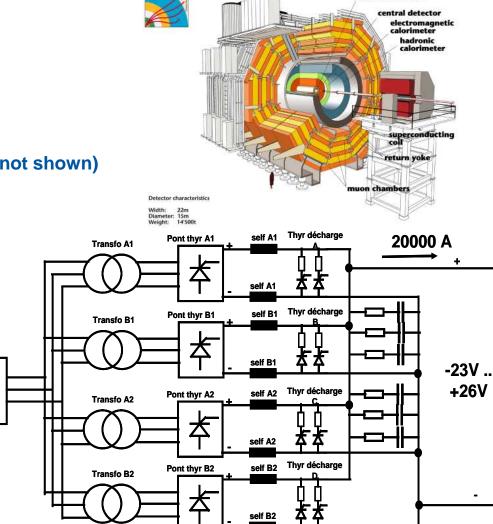
• 1-100ppm depending on application

20kA power converter -CMS Solenoid

3~

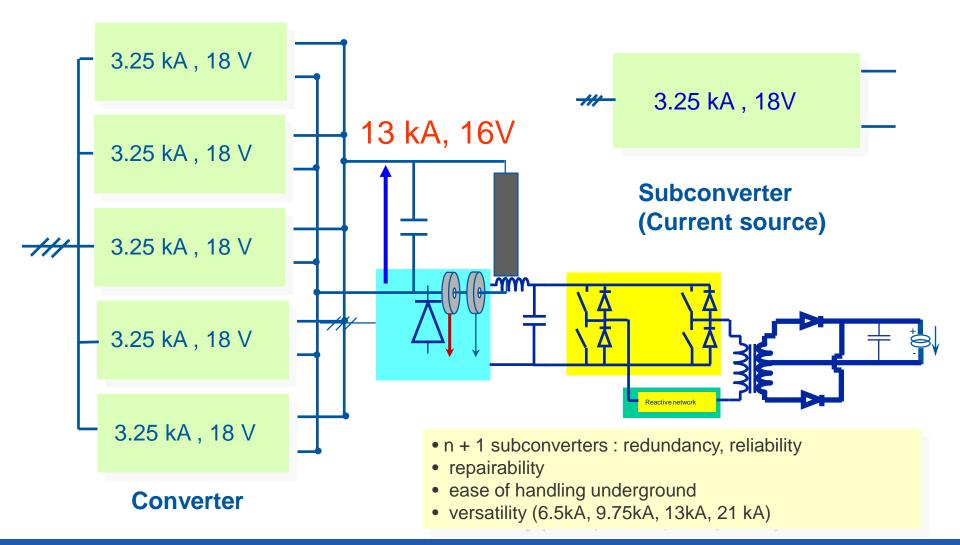
400V

The load


- Superconducting magnet: L= 14H
- Nominal current: 20 kA
- Stored energy: 2.8 GJ
- Time constant: 39 hours
- Time for current ramping up: 3h15m
- Energy extraction system (resistor bank, not shown)

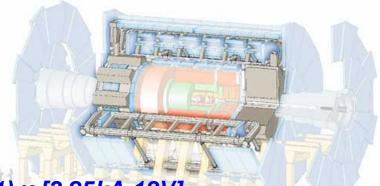
The power converter

Equipaggiamenti Elettronici Industriali


Slide by Frederick Bordry, CERN Accelerator school 2009

vacuum chamber

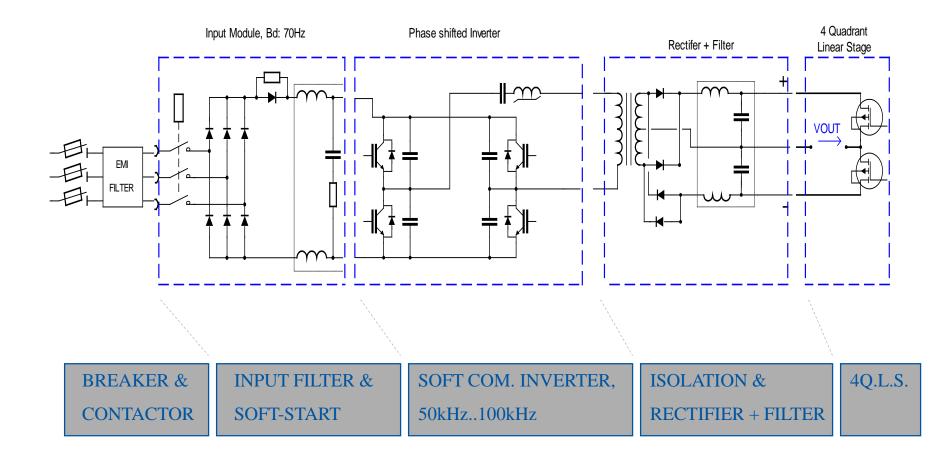
Converter modularisation



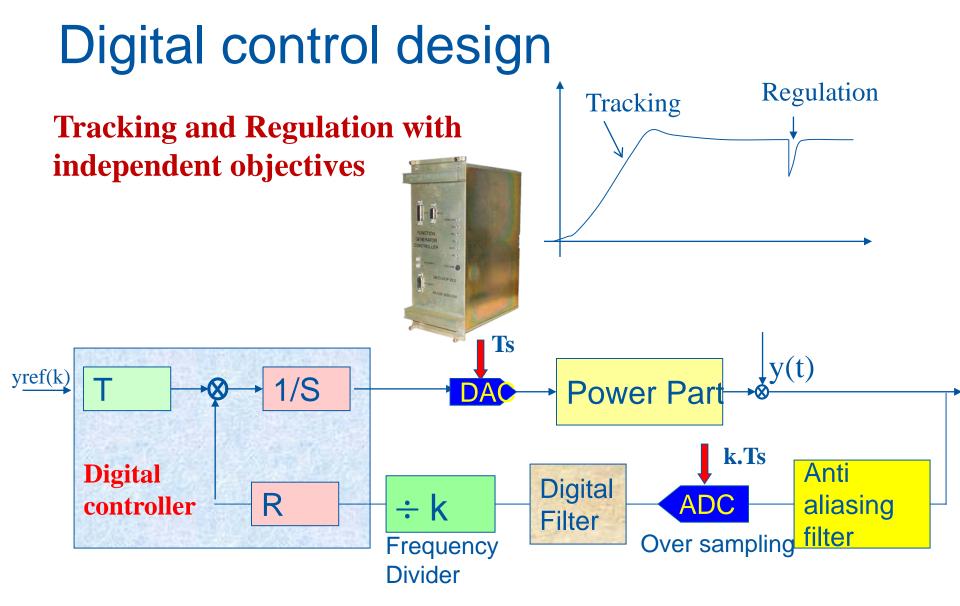
20.5kA power converter – ATLAS solenoid

The load

- Superconducting magnet: L= 7.5 H
- Nominal current: 20.5 kA
- Stored energy: 1.6 GJ
- Time constant: 37'500 s

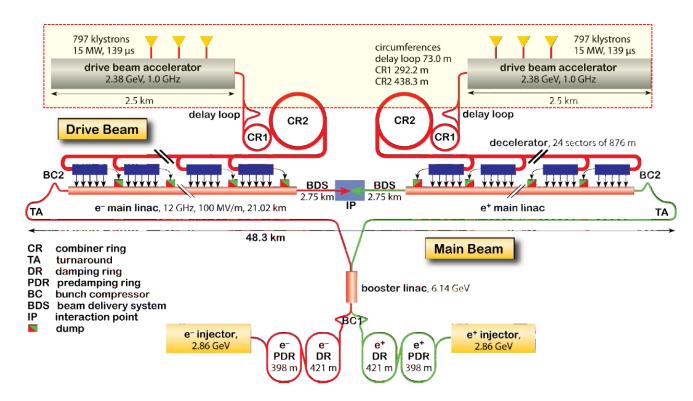

The power converter : [20.5 kA, 18V] ; (7+1) x [3.25kA, 18V]

Slide by Frederick Bordry, CERN Accelerator school 2009

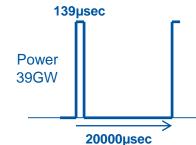


Typical Converter topology (120A,10V)

Slide by Frederick Bordry, CERN Accelerator school 2009



Slide by Frederick Bordry, CERN Accelerator school 2009

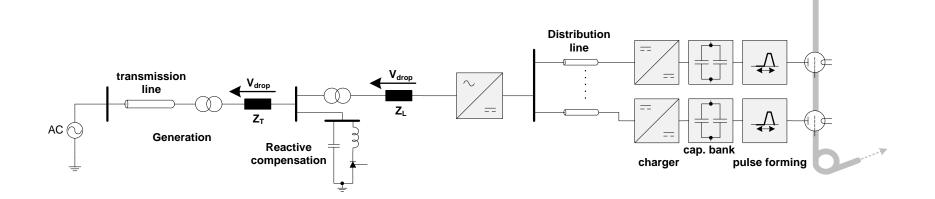

Έρευνα: πιο αποδοτικά συστήματα τροφοδοσίας

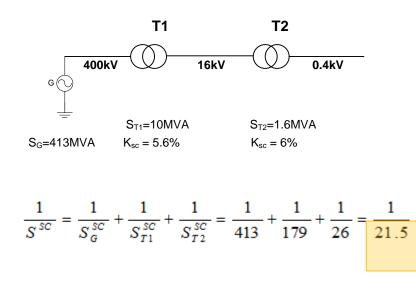
Compact Linear Collider (CLIC)

RF modulators are the primary electrical power consumer

Pulses of 139us 150kV and 160A resulting in bursts of 24MW per modulator

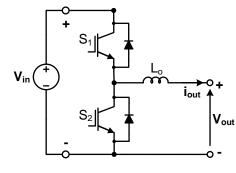
CLIC Specifications

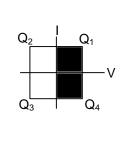

				~		==		
Modulator's output pulse specification				AFE	DC link cap	DC regulator	Pulse forming	
Nominal pulse voltage	V_{kn}	150	kV					
Nominal pulse current	I_{kn}	160	Α		Vmax	::		
Pulse peak power	P_{mod_out}	24	MW					
Rise & fall times	t_{rise}, t_{fall}	3	μs	2	V _{min}			
Settling time	t_{set}	5	μs	>				
Flat-top length	t_{flat}	140	μs					
Repetition rate	REPR	50	Hz				Time [ms]	
Voltage overshoot	Vovs	1	%		K		-	
Pr	ecisions					10	1	
Flat-Top Stability	FTS	0.85	%		Annelianti			
Reproducibility (6kHz-4MHz)	PPR	10	ppm			on paramet		
Efficiencies					 The load is 1638 Klystron tubes 150kV/160A 140µs flat-top required -> 			
Charger electrical efficiency	η_{ch}	96	%		24MW peak per Klystron -> 39.3GW peak			
PFS electrical efficiency	η_{pfs}	98	%		load			
Pulse efficiency	η_{pulse}	95	%		Average power per klystron modulator			
Modulator global efficiency	η_{mod_global}	90	%		168kW	a for a $0.00%$ off	ficiency (plug to	

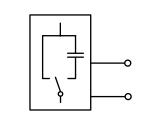

• Accounting for a 90% efficiency (plug to drive beam) -> total average power 275MW

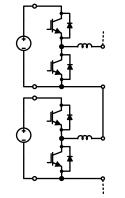
load

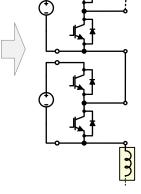
CLIC Grid interface






- The network impedance limits the power that can be drawn.
- At the rated power network impedance will be responsible for <10% voltage drop.
- Drawing 39000MVA out of a 300MVA transformer would collapse the voltage (hence tripping the protections)


From 2Q to multilevel

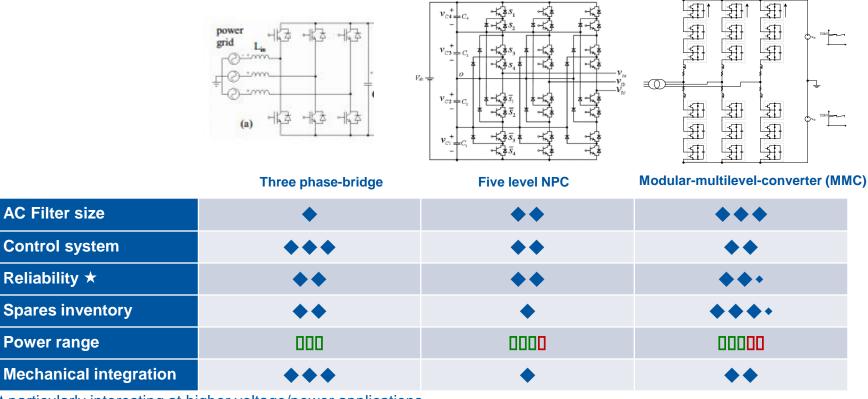


Q1: Q2: V: positive I: positive V:positive I:negative

Series-connection of 2Q dc/dc

Lumped inductor Capacitors in place of voltage sources

DC-supply added



κδπ

AFE Concepts

Topology comparison for:

- high voltage (>20kV) and
- high power (>20MW) applications

*particularly interesting at higher voltage/power applications

- Ερωτήσεις;

http://www.cern.ch/aftervisit

Life at CERN

www.cern.ch