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Abstract

A promising new approach for designing controllers to stabilize intra-bunch
transverse instabilities is to use multi-input multi-output (MIMO) feedback design
techniques. However, these techniques require a reduced model and estimation of
model parameters based on measurements. We present a method to identify a
linear reduced order MIMO model for the vertical intra-bunch dynamics. The
effort is motivated by the plans to increase currents in the Super Proton
Synchrotron as part of the HL-LHC upgrade where feedback control techniques
could be applied to stabilize the bunch dynamics, allowing greater freedom in the
machine lattice parameters. Identification algorithms use subspace methods to
compute a discrete linear MIMO representation of the nonlinear bunch dynamics.
Data from macro particle simulation codes (CMAD and HEADTAIL) and SPS
machine measurements are used to identify the reduced model for the bunch
dynamics. These models capture the essential dynamics of the bunch motion or
instability at a particular operating point, and can then be used analytically to
design model-based feedback controllers. The robustness of the model
parameters against noise and external excitation signals is studied, as is the effect
of the MIMO model order on the accuracy of the identification algorithms.

INTRODUCTION

I Electron clouds [1] and machine impedance can cause intra-bunch instabilities at
the CERN Super Proton Synchrotron (SPS).

I Modern control techniques can be used to mitigate these problems but require
reduced order models of intra-bunch dynamics to design optimal and robust
controllers for a wideband feedback systems [2].

I We use system identification techniques to estimate parameters of linear models
representing single bunch dynamics.

I Experimental data was collected from a single bunch with 1× 1011 protons at
26 GeV with low chromaticity and Q26 optics configuration at CERN SPS.

I These studies uses 3.2 GS/s sampling rate allowing us to sample 16 different
locations across 5 ns RF bucket [2]

REDUCED ORDER MODEL & IDENTIFICATION

I The physical system is a nanosecond scale SPS bunch.

I Control variable is momentum kick / driving signal and measured variables is
vertical displacements. The control variables and measured variables are
discretized to represent the physical system in a discrete-time MIMO system
sampled at every revolution period k :

Xk+1 = AXk + BUk
Yk = CXk

(1)

I where U ∈ Rp is the control variable (external excitation), Y ∈ Rq is the
vertical displacement measurement, A ∈ Rn×n is the system matrix, B ∈ Rn×p

is the input matrix, and C ∈ Rq×n is the output matrix.

Y (z) =
[
D−1(z)N(z)

]
U(z) (2)

I [] represents the transfer function matrix (∈ Rq×p) for a system with p inputs
and q outputs. D(z) and N(z) represent denominator and numerator of each
discrete time transfer function between input-output couples.

N(z)U(z)− D(z)Y (z) = 0 (3)

U(z) =
T∑
i=0

Uiz
i , Y (z) =

T∑
i=0

Yiz
i (4)

D(z) =
T∑
i=0

Diz
i , N(z) =

T∑
i=0

Niz
i (5)

[
Nr | − Dr

] [U(k)
Y (k)

]
= 0 (6)

I Given the input and output signals, the estimation of the parameter matrices Nr

and Dr is obtained by solving the last linear equation.

I Identify A, B, C matrices in discrete time observable canonical form. This
minimizes the number of parameters to be identified [4].

I Figure 1 shows the impact of noise on estimation of system parameters. For
identification algorithm to perform well, we need to have SNR >∼ 8.
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Figure 1 : Deviation of estimated natural tune and damping of the 1st mode from the true value for
different SNR values. Red line shows min SNR to get errors less than 10%, green line is for errors
less than 5%.

RESULTS OF MODELS PARAMETER ESTIMATION

I In our driven measurements we used both mode 0 and mode 1 excitations [2]

I Our data processing uses a time varying bandpass filter to improve SNR to ∼20
to overcome possible signal to noise problem showed in Fig. 1 .

I The existing limited bandwidth kicker [3] forces us to set our reduced model to
detect low order modes corresponding to frequencies up to the second sideband
(2fs) around the betatron frequency (fβ).

Figure 2 : Reduced model for intra-bunch dynamics.

I Dynamics, input-output relation of momentum kick and vertical displacement, is
represented by 4 × 4 MIMO system with p = 4, q = 4 and n = 8.

I In Fig. 3 plots show the vertical displacement of 4 samples across the bunch.
Measured data is represented by the blue trace and the response of the identified
model is the red trace.
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Figure 3 : The vertical displacements at multiple locations across 3.2ns SPS bunch with
measurements in blue and the response of the reduced order model in red.

I Reduced order model is linear time invariant. It can’t capture external
perturbations or parameter variations in the bunch.

I The envelope of the amplitude of the centroid motions (each sample is
calculated averaging 4 consecutive non overlapping samples of the 16 samples
long original data) is captured in time domain.

I Figure 4 shows measurements and response of model in frequency domain.
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Figure 4 : FFT of vertical displacement. Mode 0 tune is around 0.182 and mode 1 tune is around
0.187.

I Estimation of state space matrices enables us to calculate eigenvectors of the
system.

I Another data set where the bunch has 3 modes excited.

I On the left, RMS spectrogram of the driven measurement with clear mode 0,
mode 1 and mode 2 excitation around turns ∼ 7000, ∼ 12000 and ∼ 17000.

I On the right side, RMS spectrogram of bunch’s vertical motion predicted by
reduced model.

I As expected, our linear model is able to capture dominant characteristics and
linear dynamics such as motions at mode 0, mode 1 and mode 2 tunes, but not
the effect attributed to the non-linearity in the driver.

Figure 5 : Spectrogram of physical
measurement.

Figure 6 : Spectrogram of the model with same
excitation and analysis applied.

I In the simulation, the bunch is represented by 64 slices. All the individual
samples across the bunch were taken into account to set N × N MIMO system
with N inputs, N outputs and 2N states. Identification is performed based on an
N × N MIMO model.

I Similar techniques are also applicable to the non-linear macro particle codes like
HEADTAIL or CMAD data.

I As opposed to machine conditions and experiments, simulations have control
over noise, disturbances, etc. This gives more flexibility and control to check the
performance of the identification algorithm.

Figure 7 : HeadTail simulation data. Input chirp
is between 0.144 and 0.22 fractional tunes
covering 2 synchrotron side bands around
betatron tune.

Figure 8 : Reduced order model response to
same input signal (0.144 - 0.22 chirp). Reduced
order parameters are estimated based on
HeadTail simulation data.

Figure 9 : CMAD simulation data. Input chirp is
between 0.144 and 0.22 fractional tunes covering
2 synchrotron side bands around betatron tune.

Figure 10 : Reduced order model response to
same input signal (0.144 - 0.22 chirp). Reduced
order parameters are estimated based on CMAD
simulation data.

I A model reduction technique is applied to the result based on Henkel Singular
Value (HSVD) analysis to get a minimum order balanced realization of the
model [5]. HSVD analysis indicates that relative contributions of the dominant
mode representing states are noticeable higher than the contributions of the
remaining 128 states (N = 64 case).
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Figure 11 : HSVD Analysis suggests the model
order for balanced realization of HEADTAIL
simulation based identified model.
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Figure 12 : HSVD Analysis suggests the model
order for balanced realization of CMAD
simulation based identified model.

CONCLUSION and FUTURE WORK

Model-based control design techniques for intra-bunch instabilities requires a
reduced model of the intra-bunch dynamics. We proposed reduced order models
and show initial results of the identification of those models. We identified
parameters of a reduced order model that captures mode 0, mode 1 and mode 2
dynamics from the CERN SPS machine measurements. The natural tunes,
damping values and the separation of modes associated with the motion seen in
measurements are estimated correctly using a linear model. We also show similar
results using macro particle simulation codes data. Dominant dynamics is
captured with a reduced order model and simulation data is regenerated
successfully in time domain. Future work is aimed at estimating more internal
modes as the wideband kicker will be available early 2015. Availability of the new
wideband kicker also requires careful analysis of persistency and optimality of the
new excitation signals for the estimation of higher order internal modes. Optimal
and robust controllers will be designed using identified reduced order models.
These new model based control architectures will be compared with the existing
parallelized control filter architecture in terms of performance, processing power
and complexity requirements. We plan to evaluate new controllers using macro
particle simulations and test in the SPS with single bunch mid 2015.
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