Beam Diagnostic Tools for Crab-Cavity Tests in the SPS

T. Mastoridis¹

¹California Polytechnic State University, San Luis Obispo, CA

November 20th 2014

Acknowledgement:

This talk would not be possible without the material and help from H. Bartosik, R. Calaga, J. Fox, W. Hofle, T. Levens, G. Papotti, R. Steinhagen, M. Tobiyama

< ロ > < 同 > < 回 > < 回 >

Introduction	tion Transverse BQM		Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	uction					

- Transverse BQM
- 3 Multiband Instability Monitor
- Head Tail Monitor
- 5 Wideband Transverse Feedback
- J-PARC Intra-Bunch Feedback System
 - Conclusions

ъ

Why do we need advanced diagnostic tools?

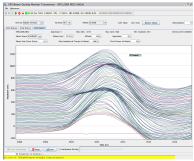
SPS tests

- Achieve sub-nanosecond resolution to setup, operate, evaluate crab cavities
 - Evaluate head-tail motion
 - Measure orbit, tune, tune-shift along the bunch, bunch emittance.
 - Turn-by-turn data for optics measurements and crab dispersion
- Pickups and advanced processing of associated beam signals are necessary.
 - This talk focuses on the available processing instrumentation.
 - The question of the pickups is important as well though: how many? What kind of technology (strip lines, tapered strip lines, etc.)?

Instruments of Interest

SPS tests

- Four instruments of interest:
 - Head Tail Monitor from BI group at CERN
 - Transverse BQM
 - Multiband Instability Monitor (MIM)
 - Transverse Wideband Feedback
- Other options
 - Install a streak camera and look at synchrotron light at 450 GeV.
 - Adjust collimation with and w/o crabbing and check beam losses with tilted bunches.
 - Another implementation to consider: Intra-bunch Feedback System at J-PARC.


Introduction	Transverse BQM	MIM	Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	uction					
2 Transv	erse BQM					
3 Multiba	and Instability M	lonitor				
A Hood	Tail Manitar					

- Wideband Transverse Feedback
- 6 J-PARC Intra-Bunch Feedback System

T. Mastoridis

Transverse BQM: Description

- 10 bit resolution, 8 GSPS sampling rate
- Uses an exponentially tapered stripline
- ullet pprox 32 megasamples usable memory. Maximum 4k turns
- Reconfigurable for any SPS cycle sequence with separate settings for the individual cycles.

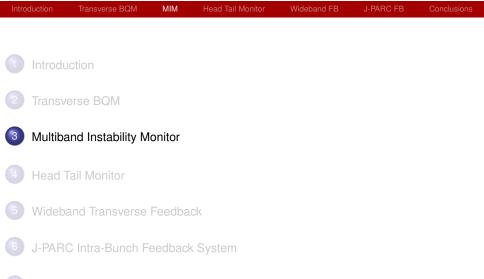
Courtesy H. Bartosik

T. Mastoridis

Diagnostic Tools for Crab-Cavity Tests

イロン 人間 とくほ とくほう

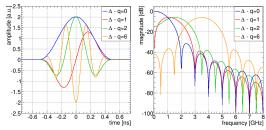
Transverse BQM: Pros and Cons


Pros:

- Already developed and used. GUI and logging application in operation (developed by F. Follin), FESA support completed (G. Papotti).
- The acquisitions recently helped determine that the PS extraction kicked was not perfectly timed.
- Cons:
 - Issues with data logging since too much data is being generated → limited functionality.

9 D P	> o + =	• 03 Nev 2014 19:	28:21 595 - 86 5	63	1	IL MD3 MD_SCRUP_:	25_1.2
First Wa	Device Delt	a Harizantal 💌	System:	ON ¥	Nade: eCloud	¥	
	SPS.USER.MI Shaw Ware	DS Injection: 2 ENABLED V	Min ADC 0 Offset	Max ADC: 0	SSC Number 279 Injection: 27	2014.11.03 19:28	13
31 21	0 - 12 Locard Trace 0 Trace 1	1				1.1	
(Virgitude Jarli)	. liithatt				en fille frederingen som	nantilitura	
ج 10 20					- of the top of a	atilitae.	
Ille See	n Neniterina	580 1800	1500	2000 Time (m)	2500 3000	2501	NT
		n te dizelar			interinterio de la composición de		

Courtesy H. Bartosik


Diagnostic Tools for Crab-Cavity Tests

Multiband Instability Monitor: Description

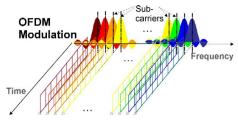
MIM

- Multiband-Instability-Monitor (MIM) provides an alternative nm-level and wide-bandwidth (> 6 (12 GHz)) transverse and longitudinal instability diagnostic.
- The beam signal is passed through an RF filter bank, and each output downconverted to baseband and sampled with a high resolution ADC (similar to BBQ).
- Initial version will have 8 frequency bands from 0.4 to 3.2 GHz and will only acquire turn-by-turn. Future upgrade would have full bunch-by-bunch acquisition (in parallel).
- The goal is to have a development system in the SPS for testing.
- The residual modes from the crab cavities should be visible
- Utilizes long stripline pickup

Courtesy R. Steinhagen

Diagnostic Tools for Crab-Cavity Tests

Multiband Instability Monitor: Pros and Cons


MIM

Pros:

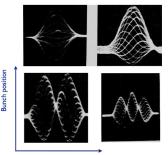
- Could have bunch-by-bunch resolution, for >10k turns and a bandwidth of 6 GHz
- Can run continuously (no data limitation), looking at each mode and provide a warning if over a threshold → useful for post mortem analysis
- More sensitive than any other direct time-domain detection

Cons:

- In development.
- Looses some of its sensitivity in bunch-by-bunch mode.

Courtesy R. Steinhagen

Introduction	Transverse BQM	MIM	Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	iction					
2 Transv	erse BQM					
3 Multiba	and Instability M	onitor				
4 Head	Fail Monitor					


- Wideband Transverse Feedback
- J-PARC Intra-Bunch Feedback System

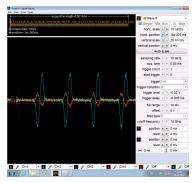
T. Mastoridis

イロト イポト イヨト イヨト

Head Tail Monitor: Description

- 8-bit Guzik digitizers installed in the SPS (http://www.guzik.com). They replace the scope. Embedding custom firmware in them is not straightforward.
- 20 GSPS (single plane) or 10 GSPS (both planes).
- Maximum 64GS of data (i.e. 16GS/channel = 1.6 seconds)
- Utilizes same long stripline pickup as MIM.

200 ns


Courtesy T. Levens

Diagnostic Tools for Crab-Cavity Tests

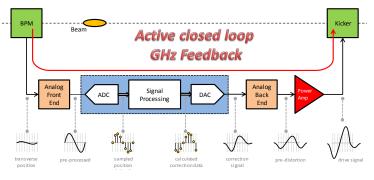
Head Tail Monitor: Pros and Cons

Pros:

- High sampling rate.
- Upgrade of existing system.
- Cons:
 - Huge amount of data to process and store.

Diagnostic Tools for Crab-Cavity Tests

Introduction	Transverse BQM	MIM	Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	uction					
2 Transv	erse BQM					
3 Multiba	and Instability M	lonitor				
4 Head	Tail Monitor					


- 5 Wideband Transverse Feedback
 - J-PARC Intra-Bunch Feedback System

• • • • • • • • • • • •

TH 16

Wideband Transverse Feedback: Description

- 4 GSPS (8 GSPS to be developed), 8 bits.
- Closed loop test were performed in the SPS in 2012 (proof of principle)
- Reconfigurable processing
- Software available to fit data to models → characterize beam dynamics and evaluate different feedback algorithms.

Courtesy J. Fox

Wideband Transverse Feedback: Pros and Cons

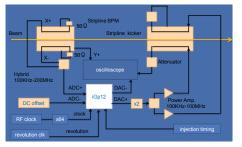
Pros:

- As this system's primary purpose is active feedback, it offers a lot of additional advantages beyond diagnostics.
- Full control of FPGA (Headtail monitor possible, but harder than expected) → Could select data to store, remove majority of useless zeros, and thus record longer sequences of data.
- Synchronized to RF clock
- Data processing and analysis software ready.
- Can do active experiments, measurements of beam transfer function (useful for instabilities, not necessarily crab cavities)
- Could possibly act on RF Amplitude Noise effects (SPS+LHC)!
- Similarly to MIM, it can provide post mortem recording.
- And of course has applications past diagnostics: damp TMCI, e-cloud driven instabilities. Applicable to SPS, LHC scrubbing run, future LHC?

Cons:

- Demonstrated for a single bunch only
- Low sampling rate currently (4 GSPS)

Introduction	Transverse BQM	MIM	Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	uction					
2 Transv	erse BQM					
3 Multiba	and Instability M	onitor				
Head ⁻	Tail Monitor					


- Wideband Transverse Feedback
- J-PARC Intra-Bunch Feedback System

< A

• • • • • • • • • • • • •

J-PARC Intra-Bunch Feedback System: Description

- 64 slices in 200 ns long bunch (limited resolution for SPS applications?)
- Successful in suppressing instabilities at J-PARC.
- Online analysis of instability data.
- Utilizes Dimtel's iGp12 www.dimtel.com/products/igp12

Courtesy M. Tobiyama

Introduction	Transverse BQM	MIM	Head Tail Monitor	Wideband FB	J-PARC FB	Conclusions
1 Introdu	uction					
2 Transv	verse BQM					
3 Multiba	and Instability M	onitor				
4 Head	Tail Monitor					

- Wideband Transverse Feedback
- J-PARC Intra-Bunch Feedback System

T. Mastoridis

• • • • • • • • • • • •

B 5

Introduction Transverse BQM MIM Head Tail Monitor Wideband FB J-PARC FB Conclusions
Contacts

- Transverse BQM: H. Bartosik, G. Papotti (CERN).
- Multiband-Instability-Monitor: T. Levens, T. Lefevre (CERN).
- Head-Tail Monitor: T. Levens, T. Lefevre (CERN).
- Transverse Wideband Feedback: J. Fox (SLAC), W. Hofle (CERN).
- J-PARC Intra-bunch Feedback System: M. Tobiyama (KEK).

- Each system has advantages, disadvantages.
- It might be reasonable to set specifications/requirements before full evaluation, allocation of resources?
- Promising and exciting technologies.
- Decision should be made on associated pickup technology as well.

LHC applicability

- SPS excellent test-bed for LHC applications
- LHC diagnostics for crab cavity operation
- Probe proximity to instabilities through Beam Transfer Function measurements. In the case of the Wideband Feedback, potentially even act on these instabilities.

Many thanks to H. Bartosik, J. Fox, W. Hofle, T. Levens, G. Papotti, R. Steinhagen, M. Tobiyama.

Thank you for your attention!