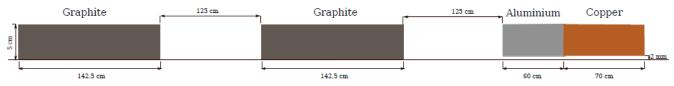


Jan Uythoven, Anton Lechner


HL-LHC Annual meeting @ KEK 17 – 21 November 2014

Luminosity WP14: Injection protection upgrade

- Injection protection IP2 and IP8 : to be installed in LS2
- Absorber design taking into account
 - Protection of downstream elements (D1, Q6 etc.)
 - Survival of absorber, especially the TDIS
 - Impedance considerations
 - Experiments: opening angle for ALICE ZDC
- TDI \rightarrow Segmented TDIS
 - Most important and complicated element for injection protection
 - Decided to go for 3 x 1.5 m modules
 - 2 x low Z (graphite) + 1 x high Z (materials to be optimised)

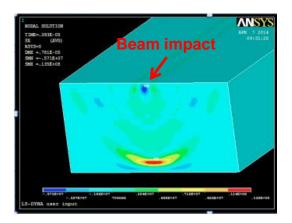
Integration to be formally approved (800 mm chamber)

HL-LHC annual meeting, 19/11/2014

High

TDIS – Most critical

Protection of downstream elements


- □ **TDIS** can have about same integrated absorber length as present TDI
 - Critical case is grazing impact, about 1 σ impact, almost independent of absorber length
 - Full impact of HL-LHC beams is fine with present length
- Survival of absorber: TDIS

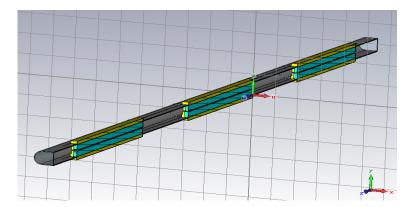
High Luminosity

- \square Critical is again grazing case, about 1 σ impact
 - Presently assume graphite as low Z absorber
 - Research on materials like 3D Carbon/Carbon
 - Material can be 'exchanged' during design phase
 - HiRadMat tests foreseen in 2015

Beam	Emit. x,y [μm]	N _b [p/bunch]	# bunches	M-C Safety Factor
Standard	2.0	2.3e11	288	1.01
BCMS	1.3	2.0e11	288	0.90
BCMS	1.3	2.0e11	240	1.43
Considering no error from energy deposition calculations.				

A. Lechner, N. Shetty, G. Steel, F. Lorenzo Maciariello, A. Perillo Marcone

Deliverable D2.6: Specification of Machine and Beam Parameters: It must be noted that the feasibility of a design of the injection absorber TDIS to absorb safely the nominal and especially BCMS beam with the bunch population <u>listed in Table 1</u> and small emittances is very challenging and it is presently under study.



HL-LHC annual meeting, 19/11/2014

TDIS impedance

- Present TDI impedance is critical due to beam induced heating causing damage to the TDI and outgassing
- Many differences with standard collimator
 - □ Two beams, large volume required for non-injected beam → optimised design of the current secondary collimator cannot be used
 - □ Large front phase for beam impact in case of MKI failure, no RF fingers.
 - Large clearance in stable beams, large excursion between injection and pre-ramp settings
- Addressed with priority in the new design
 - □ Improve the cooling, ensure it is cooling what and where it should
 - □ Surface coating
 - □ Closure of gap between the jaw and the beam screen for different jaw positions
 - Evaluation of impedance of the interconnections for different jaw positions
- Baseline design with
 3 separate jaws and tanks ->
 Additional transitions will add
 impedance. Tapering adds length

B.Salvant, N.Biancacci, E.Metral, A.Danisi, O.Frasciello (INFN), M.Zobov (INFN)

HL-LHC annual meeting, 19/11/2014

TDIS Impedance

- Large parameter space to optimise including tapering of the absorbers
 - □ First simulations made, positive effect of 10 cm taper —
 - Beginning of next year second iteration with preliminary design, many other parameters to optimise
 - Taper length, taper height, transition length, transition height, non-linearity of tapers, jaw materials / coating, beam screen material

Wake impedance Z [Imaginary Part]

Frequency / GHz

0.35

0.4

- Longitudinal and transverse effective impedance for beam stability
- Longitudinal and transverse resonant modes for beam stability
- Longitudinal real impedance for beam induced heating

Lower frequencies most important for the beam 40 0 0.05 0.1 0.15 0.2 0.25 0.3

WP14 Overview, Jan Uythoven

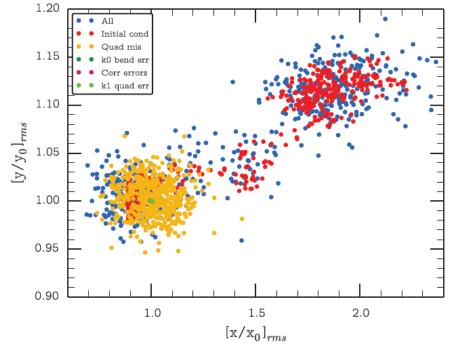
200

160

1 module

2 modules

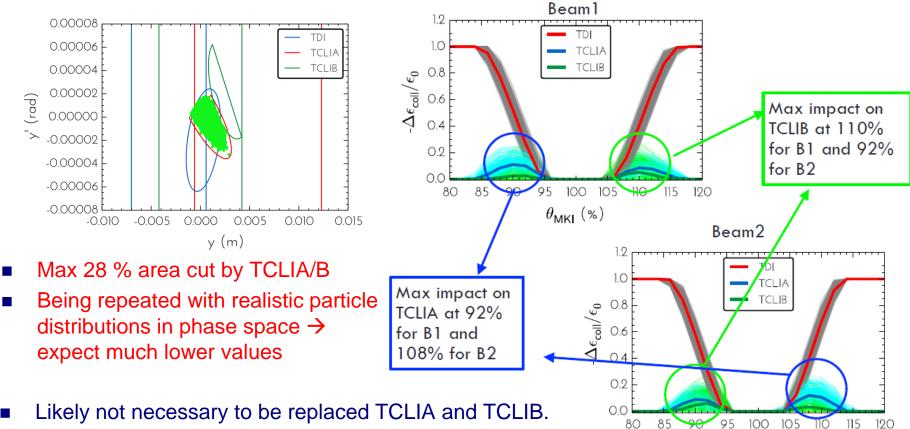
0.5


0.45

MKI Failure Studies

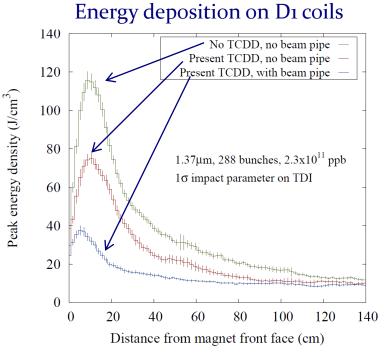
F.Velotti

- MKI strength between +/- 20%
- LIU-BCMS beam
- TDI aperture 6.8 σ (ϵ_{nom})
- TCLIA/B aperture 6.8 σ (ϵ_{nom})


- MKI strength of +/- 10% gives the: grazing impact on the TDI
- Evaluate the expected beam impacting on the TCLIA/B in case of MKI failures
 - Single particle emittance considered
 - ► 5 σ extension in y and y' $y = y_0 + 5\sqrt{\epsilon_y \beta_y} \cos(\psi_y)$ $y' = y'_0 - 5\sqrt{\epsilon_y / \beta_y} (\alpha_y \cos(\psi_y) + \sin(\psi_y))$

<u>Consider realistic machine failures</u> <u>in magnetic fields and orbit,</u> <u>co_{rms} of 0.24 mm.</u>

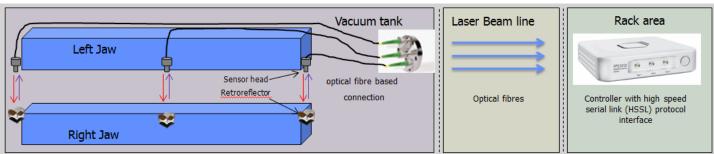
HL-LHC annual meeting, 19/11/2014



TCLIA and TCLIB

- Final decision before the end of 2014
- However, opening angle TCLIA might need to be enlarged for ALICE ZDC. Follow-up TREX & WP8
 - Sufficient argument to replace TCLIA in IP2?
- Damage levels of downstream Q6 should not be reached

- Results depend strongly on geometry
- Beam pipe is shielding as much at the TCDD
- Improvements of about a factor 2 can be obtained by reducing TCDD aperture and bringing TCDD closer to the D1.
- Study mask within the D1 cryostat

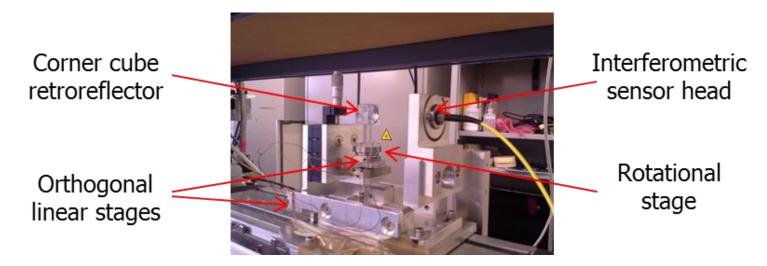

HL-LHC annual meeting, 19/11/2014

WP14 Overview, Jan Uythoven

- Protection of D1 against damage.Quench cannot be avoided
- Grazing impact on TDI
 - Effect on D1 rather independent on beam size
- Peak power deposition of 37 J/cm³
- What is the damage limit of the D1?
 - Previously published value of 50 J/cm³ not correct
 - Need at least a safety margin of factor 3
 - Beginning of December meeting with magnet expert and one needs to decide upon a damage threshold
 - This will then decide if the TCDD needs to be adapted or not

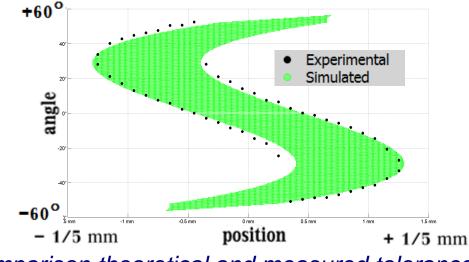
See A. Lechner, parallel session WP5/7/14 Next talk

TDI(S) interferometric system



- Interferometry very important for safety as to guarantee the correct positioning of the TDI jaws in combination with the Beam Energy Tracking System.
- To be installed on spare TDIs for Run II, installation during Run II. Test bench developments, new sensor heads, feed through tests: so far so good.
 - Custom, high alignment tolerance, radiation hard, interferometric position sensor head with metal FC/PC connectors
 - Vacom rad-hard, UHV, aluminium coated optical fibre with stainless steel 304, FC/PC connectors and bakeable @ 300 °C
 - = Corner cube retroreflector (+/- 50 mrad, +/- 2 mm, bakeable @ 300 °C)
 - = Fibre Design, Stainless Steel 316L, vacuum feedthrough (3 channels) with FC/PC connectors , bakeable @ 300 °C
 - = Fujikura, "UV-acrylate" coated, rad-hard fibre (RIA \approx 30 db/km @ 10 MGy, max working temperature = 85 °C)
 - = Attocube FPS3010, 3 channel interferometer controller with 500 kS/s, 48 bit position output with 1pm resolution

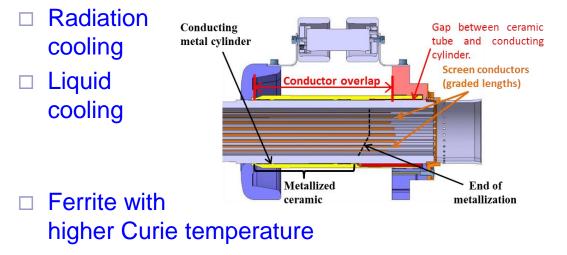
A. Masi, M.Butcher



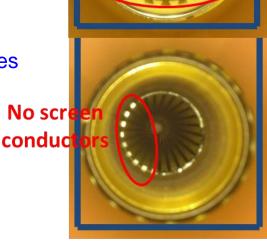
Interferometric Test Bench

Tolerance for **Standard head** + Retroreflector at 60 mm working distance and centre of rotation at 7.5 mm from retroreflector vertex:

Comparison theoretical and measured tolerances


HL-LHC annual meeting, 19/11/2014

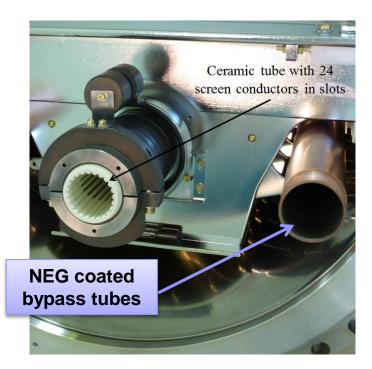
Injection kicker magnet MKI: heating


M.Barnes

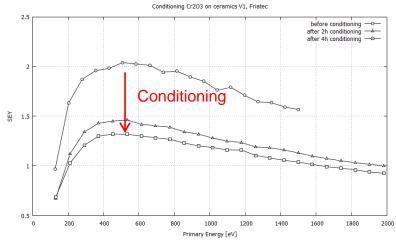
- In LS1 increased number of screen conductors from 15 to 24 screen conductors
- Experience from LS1 with 'rotated' conductors: operational limit at power deposition of 160 W/m
 - Run II expect about 50 W/m: OK
 - HL-LHC expect **UP TO** 190 W/m \rightarrow need further measures
 - Proto-type part of HL-LHC baseline, not the series
- New developments
 - Further 'overlap' studies capacitively coupled end

No scree conducto

No scr

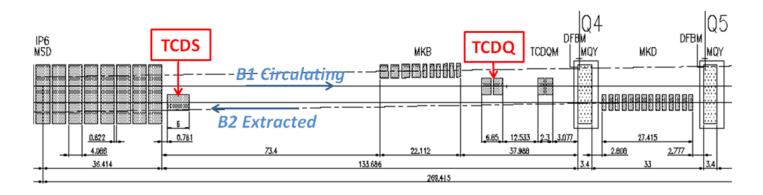


24 scree conducto


HL-LHC annual meeting, 19/11/2014

Luminosity Injection kicker magnet MKI: ecloud

- LS1 MKI bypass tubes NEG coated, as nearby equipment.
- Ceramic tube can still be an issue with SEY values 6 10. Required SEY < 1.4
- Cr_2O_3 coated ceramics SEY ≈ 2 , conditioned to < 1.4
- Contract placed to develop application method for Cr₂O₃ coating of MKI ceramic chamber to reduce SEY. If successful apply on prototype magnet.
- Looking for position in machine for passive prototype



HL-LHC annual meeting, 19/11/2014

High

Any changes to be made in LS3

- Verification of TCDS for HL-LHC beams. Will likely need to be upgraded.
- Check the already modified TCDQ. Further upgrade not foreseen in the baseline.
- □ Check TDE heating after multiple dumps nitrogen venting.
- Check TDE window if this is an issue, might need to change dilution pattern. This is not part of the HL-LHC baseline.